Search
Menu
PI Physik Instrumente - Fast Steering LB LW 11/24

Semiconductors Stack Up as Photonic Crystals

Facebook X LinkedIn Email
KYOTO, Japan -- The same structure that one might use to build a bonfire is also heating up photonics. By alternately stacking strips of semiconductor material, scientists at Kyoto University and the Ministry of International Trade and Industry in Tsukuba have created three-dimensional photonic crystals with a nearly perfect bandgap at telecommunications wavelengths.
In a repetitive two-step process, the researchers grew GaAs or InP on a III-V semiconductor substrate in a striped pattern, with the period, width and thickness of the pattern dictated by the bandgap wavelength. They then fused two striped wafers to the layer in a configuration rotated 90° with respect to the one below. Wet chemical etching selectively and sequentially removed one of the substrates and the etching stop layers, leaving a pile of micron-size "logs." The team shifted subsequent layers by half a period from their parallel counterparts on other layers, using a laser-diffraction alignment method to precisely control the placement of the structures.
An eight-layer crystal, described in the July 28 issue of Science, showed attenuation of >40 dB, corresponding to 99.99 percent reflection at the full bandgap of 1.3 to 1.55 µm. The researchers also demonstrated an air waveguide with a 90° bend that they constructed in a 12-layer crystal.
Team leader Susumu Noda, a professor of science and engineering at Kyoto University, said the researchers hope to produce a zero-threshold laser in an optical integrated circuit with sharp waveguides. "To do this," he said, "we have to design a single defect that is appropriate as a cavity and confirm that zero-threshold oscillation occurs -- something that's not been demonstrated yet in the real world.
DataRay Inc. - ISO 11146-Compliant

Published: November 2000
CommunicationsNews & Features

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.