Search
Menu
Meadowlark Optics - Wave Plates 6/24 LB 2024

Scattered Photons Transfer Quantum Coherence in Free Space

Facebook X LinkedIn Email
Researchers at the University of Waterloo report the first successful transfer and recovery of quantum coherence using photons scattered in free space. The work points toward research opportunities and applications in fields ranging from quantum communication to imaging and beyond.

Quantum coherence, while fundamental to applications of quantum technology, has been difficult to transfer in free space. It has so far been limited to direct line-of-sight channels as quality degrades severely with atmospheric turbulence and scattering.

“The ability to transfer quantum coherence via scattered photons means that now you can do many things that previously required direct line-of-sight free space channels,” said Shihan Sajeed, lead author of the paper and a postdoctoral fellow at the Institute for Quantum Computing (IQC) and in the department of physics and astronomy at the University of Waterloo.
Each optical pulse from the laser is sent through a phase converter, which creates two coherent pulses, while the multi-mode Analyzer measures the signals scattered off the target surface, implemented with regular bright paper. A single-photon-detector-array is used as the detection device, with 8 × 8 individual pixels which are each time-tagged separately. Courtesy of Shihan Sajeed and Thomas Jennewein, University of Waterloo.
Each optical pulse from the laser is sent through a phase converter, which creates two coherent pulses, while the multimode analyzer measures the signals scattered off the target surface, implemented with regular bright paper. A single-photon detector array is used as the detection device, with 8 × 8 individual pixels that are each time-tagged separately. Courtesy of Shihan Sajeed and Thomas Jennewein, University of Waterloo.

Sending and receiving photons through the air for quantum communication or other quantum-encoded protocol would normally require a direct line-of-sight between the transmitter and receiver. Any objects in the optical path (even as small as a molecule and as large as a wall) will reflect and scatter some of the photons, depending on the object’s reflective qualities. Any quantum information encoded in the photons is typically lost, therefore interrupting the quantum channel.

Sheetak -  Cooling at your Fingertip 11/24 MR

Together with Thomas Jennewein, principal investigator of the Quantum Photonics lab at IQC, Sajeed found a way to encode quantum coherence in pairs of photon pulses sent one after the other so that they would maintain coherence even after scattering from a diffuse surface. The researchers sent out a train of pulse pairs with a specific phase coherence that could be measured from the scattered photons using quantum interference. They also used a single-photon detector array sensor that, in addition to solving wavefront distortions caused by atmospheric turbulence, acted as an imager, thereby allowing the observation of single-photon interference and imaging simultaneously. They oriented the detector so that it would only absorb scattered photons from the laser pulses, and they observed a visibility of more than 90%, meaning that the scattered photons retained their quantum coherence, even after colliding with an object.

The method required custom hardware to make use of the coherent light that the researchers generated in the process. The single-photon detector they employed, for example, was capable of detecting a billion photons every second with a precision of 100 picoseconds. The team also had to design its own electronics adapter board to be able to communicate between the detectors and the computer that would process the data.

“Our technique can help image an object with quantum signals or transmit a quantum message in a noisy environment,” Sajeed said. “Scattered photons returning to our sensor will have a certain coherence, whereas noise in the environment will not, and so we can reject everything except the photons we originally sent.”

Sajeed believes that the work will serve as a catalyst for new research and applications in quantum sensing, communication, and imaging in free-space environments. Although Sajeed and Jennewein were able to demonstrate quantum and communication and imaging, further research is needed to determine how their techniques could be used in practical applications, Sajeed said.

“We believe this could be used in quantum-enhanced lidar, quantum sensing, non-line-of-sight imaging, and many other areas — the possibilities are endless,” Sajeed said.

The research was published in Light: Science & Applications (www.doi.org/10.1038/s41377-021-00565-y).

Published: June 2021
Glossary
quantum
The term quantum refers to the fundamental unit or discrete amount of a physical quantity involved in interactions at the atomic and subatomic scales. It originates from quantum theory, a branch of physics that emerged in the early 20th century to explain phenomena observed on very small scales, where classical physics fails to provide accurate explanations. In the context of quantum theory, several key concepts are associated with the term quantum: Quantum mechanics: This is the branch of...
photodetector
A photodetector, also known as a photosensor or photodiode, is a device that detects and converts light into an electrical signal. Photodetectors are widely used in various applications, ranging from simple light sensing to more complex tasks such as imaging and communication. Key features and principles of photodetectors include: Light sensing: The primary function of a photodetector is to sense or detect light. When photons (particles of light) strike the active area of the photodetector,...
phase
In optics and photonics, "phase" refers to a property of electromagnetic waves, such as light, that describes the position of a wave at a given point in time within its oscillation cycle. More specifically, it indicates the position of a wave relative to a reference point, typically the starting point of a cycle. When discussing phase in optics, it's often described in terms of the phase difference between two waves or the phase of a single wave. The phase difference between two waves is the...
Research & Technologyquantumquantum coherenceSensors & Detectorsphotodetectorsingle-photonsingle-photon countingsingle-photon detectorLasersUniversity of WaterlooShihan SajeedThomas JenneweincoherencephaseTech Pulse

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.