Search
Menu
PFG Precision Optics - Precision Optics 12/24 LB

Researchers Control Brain States Via Photoswitchable Molecule

Facebook X LinkedIn Email
A team of scientists in Spain has directly photomodulated brain-state transitions in vivo using a photoswitchable molecule that was developed previously by researchers at the Institute for Bioengineering of Catalonia (IBEC). By applying a light-responsive molecule called phthalimide-azo-iper (PAI) to the intact brain and subsequently to white light, the researchers were able to modulate slow oscillations in neuronal circuits and reversibly manipulate the oscillatory frequency of the brain.

The chemically engineered mechanism allowed the researchers to induce and investigate brain transitions from sleep-like to awake-like states in detail, and in a noninvasive way.

The method for using light to enable PAI to modulate brain rhythms was developed by scientists at IBEC and the August Pi i Sunyer Biomedical Research Institute (IDIBAPS). The study represents the first time that brain-state transitions have been controlled using a molecule responsive to light, the researchers said.

PAI can specifically and locally control the muscarinic cholinergic receptors, that is, the acetylcholine receptors in the brain. These receptors are involved in several neuronal processes, such as learning, attention, and memory. When the researchers illuminated the photosensitive molecule PAI with white light, they were able to control and investigate cholinergic-dependent brain-state transitions in the neocortex.

Scientists from IBEC and IDIBAPS have succeeded in controlling neuronal activity in the brain using a molecule responsive to light. The light-responsive molecule PAI could help scientists better understand the effects of brain state transitions on cognition and behavior. Courtesy of IBEC and IDIBAPS.
Brain waves are synchronous activation and deactivation states of groups of neurons that belong to a circuit (represented by interconnected nodes in the brain scheme). They are repeated periodically, and their frequency is associated to the wakefulness state of the individual (slower waves are found in sleep or can be induced by anesthesia). The photoswitchable bioactive compound PAI adopts an inactive form under violet light (left) and changes its shape to act as a potent muscarinic activator under illumination with white light (right). This results in an increase in the wave frequency, which is an emerging property of the brain cortex. Courtesy of IBEC and IDIBAPS.
The researchers demonstrated the ability to selectively control slow oscillations both in vitro (in experiments using ferrets) and in vivo (in experiments using mice).

Unlike optogenetics, the method developed by the IBEC-IDIBAPS team does not depend on genetic manipulation to control brain activity. Unlike transcranial magnetic stimulation or ultrasound, the PAI-based method does not have spatiotemporal or spectral performance limitations and can be used to control spatiotemporal patterns of activity in different brain states.

Lambda Research Optics, Inc. - Beamsplitter Cubes

The work of the IBEC-IDIBAPS team could provide a way to study cholinergic neuromodulation more completely, by controlling spatiotemporal patterns of activity in different brain states and in the transitions between states. It could help scientists better understand how brain states and brain-state transitions are linked to cognition and behavior. The PAI-based approach could be applied to different organisms, and since it does not require genetic manipulation, it could be translational to humans.

The ability to control neural activity is essential for research not only in basic neuroscience, but also in clinical neurology for therapeutic brain interventions. “The photocontrol of endogenous receptors and their functions in the central nervous system, such as the transition between different brain states, is an achievement for neuromodulation technologies,” IDIBAPS researcher Almudena Barbero-Castillo said.

In addition to improving the accuracy of basic neuroscience research, the use of PAI could lead to the development of selective, photomodulated drugs for the treatment of brain lesions or diseases such as depression, bipolar disorders, Parkinson’s, and Alzheimer’s.

“The control of neuronal activity in the brain is key to performing both basic and applied research, and to developing safe and accurate techniques to perform therapeutic brain interventions in clinical neurology,” IBEC researcher Fabio Riefolo said.

The researchers said that two-photon stimulation of PAI using pulsed infrared light could enable deep penetration and subcellular resolution in 3D. They believe that, compared to the local and often inhomogeneous expression patterns achieved with viral injections of optogenetic constructs, diffusible small molecules like PAI could in principle be applied to larger brain regions to control neuronal oscillations.

Further, the remote control of brain waves based on the photopharmacological manipulation of endogenous muscarinic receptors could reveal the complex 3D molecular signaling underlying brain states and their transitions.

The research was published in Advanced Science (www.doi.org/10.1002/advs.202005027).

Published: July 2021
Glossary
optogenetics
A discipline that combines optics and genetics to enable the use of light to stimulate and control cells in living tissue, typically neurons, which have been genetically modified to respond to light. Only the cells that have been modified to include light-sensitive proteins will be under control of the light. The ability to selectively target cells gives researchers precise control. Using light to control the excitation, inhibition and signaling pathways of specific cells or groups of...
photosensitivity
That property of a material indicating that it will react when exposed to light energy.
modulation
In general, changes in one oscillation signal caused by another, such as amplitude or frequency modulation in radio which can be done mechanically or intrinsically with another signal. In optics the term generally is used as a synonym for contrast, particularly when applied to a series of parallel lines and spaces imaged by a lens, and is quantified by the equation: Modulation = (Imax – Imin)/ (Imax + Imin) where Imax and Imin are the maximum and minimum intensity levels of the image.
Research & TechnologyeducationEuropeInstitute for Bioengineering of CataloniaAugust Pi Sunyer Biomedical Research InstituteLight SourcesOpticsBiophotonicsoptogeneticsbrainmedicalmedicinephotopharmacologyphotosensitivityPAIlight-responsive moleculesnoninvasivephotomodulationmodulationBioScan

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.