Search
Menu
PI Physik Instrumente - Space Qualified Steering LB LW 12/24

Researchers Awarded $1M for Method to Evaluate Quality of Turbine Components Created with Laser Powder Bed Fusion

Facebook X LinkedIn Email
PITTSBURGH, July 23, 2019 — The University of Pittsburgh's Swanson School of Engineering has been awarded $802,400 to find an effective quality assurance method for additive manufacturing or 3D-printing of new-generation gas turbine components. The components are created using laser powder bed fusion (LPBF) technology, a process that uses the heat of a laser to consolidate material into powder form to generate 3D objects.

The U.S. Department of Energy, through its University Turbine Systems Research program, has awarded the funds to researchers at the Swanson School to conduct the three-year project, which is being bolstered by additional support of $200,600 from the University of Pittsburgh (Pitt), resulting in a total grant of $1,003,000. 
Xiayun Zhao, PhD, assistant professor of mechanical engineering and materials science, (left) and Albert To, PhD, associate professor of mechanical engineering and materials science, hold up a 3D printed turbine component in the lab. (Courtesy of University of Pittsburgh)


Xiayun Zhao (left), with Albert To, holds up a 3D-printed turbine component in the lab. Courtesy of the University of Pittsburgh.

Xiayun (Sharon) Zhao, assistant professor of mechanical engineering and materials science at Pitt, will lead the research. She'll work with Albert To, associate professor of mechanical engineering and materials science at Pitt, and Richard W. Neu, professor in the Georgia Institute of Technology's School of Mechanical Engineering.

Sheetak -  Cooling at your Fingertip 11/24 MR

The team will use machine learning to develop a cost-effective method for rapidly evaluating, either in-process or offline, the hot gas path turbine components (HGPTCs) that are created with LPBF additive manufacturing (AM) technology.

Zhao said HGPTCs have a tendency toward porous defects, which makes them more susceptible to overheating.

"LPBF AM is capable of making complex metal components with reduced cost of material and time. There is a desire to employ the appealing AM technology to fabricate sophisticated HGPTCs that can withstand higher working temperature for next-generation turbines,” she said. “It's critical to have a good quality assurance method before putting them to use. The quality assurance framework we are developing will immensely reduce the cost of testing and quality control and enhance confidence in adopting the LPBF process to fabricate demanding HGPTCs."


Published: July 2019
Glossary
laser powder bed fusion
Laser powder bed fusion (LPBF) is a type of additive manufacturing (AM) or 3D printing technology that uses a high-power laser to selectively fuse or melt layers of powdered material to build up a three-dimensional object. This process is particularly common in metal additive manufacturing, where it is sometimes referred to as selective laser melting (SLM) or direct metal laser sintering (DMLS). Key features of laser powder bed fusion include: Powder bed: The process begins with a thin...
BusinessAmericasawardsLasershot gas path turbine componentslaser powder bed fusion

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.