Search
Menu
Opto Diode Corp. - Opto Diode 10-24 LB

Wrinkles Improve Fiber Optic Strain Sensor

Facebook X LinkedIn Email
Sensitivity to strain is boosted without increasing temperature sensitivity.

Breck Hitz

Fiber sensors are excellent detectors of both strain and temperature — and that can be a problem. They respond to both environmental variables, making it difficult to tell which one is changing. To compensate, fiber optic strain sensors often are deployed with separate temperature sensors nearby, so the effect of strain on the fiber sensor can be isolated. Figure 1. The scientists wrote the long-period fiber grating (LPFG) with a CO2 laser while monitoring its transmission spectrum in real time (a). A micro-photograph of the resulting grating shows the small channels ablated in the side...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: January 2007
    Glossary
    nano
    An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
    photonics
    The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
    temperature sensors
    Temperature sensors in optics are crucial for monitoring and controlling thermal effects that can significantly impact optical components and systems. Here’s how temperature sensors work and their importance in optical applications: Monitoring optical components: Temperature sensors are often placed near or directly on optical elements such as lenses, mirrors, and prisms. They continuously measure the temperature of these components to ensure they operate within specified thermal...
    environmental variablesfiber opticsFiber sensorsnanophotonicsResearch & TechnologySensors & DetectorsTech Pulsetemperature sensors

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.