Search
Menu
Excelitas PCO GmbH - Industrial Camera 11-24 VS LB

Virtual Superlens Passes Diffraction Limit Without Distortion

Facebook X LinkedIn Email
The diffraction limit enforces physical restrictions on how closely an object can be examined using traditional optical methods. Previous attempts to develop superlenses that image beyond the diffraction limit have met with extreme visual losses, to the point of making the lenses opaque. A virtual superlensing approach developed by researchers at the University of Sydney has broken through the diffraction limit by a factor of nearly four times. The researchers’ innovative approach to superlensing could improve superresolution microscopy for fields as varied as medical imaging,...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: November 2023
    Glossary
    terahertz
    Terahertz (THz) refers to a unit of frequency in the electromagnetic spectrum, denoting waves with frequencies between 0.1 and 10 terahertz. One terahertz is equivalent to one trillion hertz, or cycles per second. The terahertz frequency range falls between the microwave and infrared regions of the electromagnetic spectrum. Key points about terahertz include: Frequency range: The terahertz range spans from approximately 0.1 terahertz (100 gigahertz) to 10 terahertz. This corresponds to...
    superresolution
    Superresolution refers to the enhancement or improvement of the spatial resolution beyond the conventional limits imposed by the diffraction of light. In the context of imaging, it is a set of techniques and algorithms that aim to achieve higher resolution images than what is traditionally possible using standard imaging systems. In conventional optical microscopy, the resolution is limited by the diffraction of light, a phenomenon described by Ernst Abbe's diffraction limit. This limit sets a...
    Research & TechnologyeducationUniversity of SydneyAsia-PacificImagingterahertzLight SourcesOpticsSensors & Detectorscamerassuperresolutionsub-wavelength opticslensesSuperlensesvirtual superlensesBiophotonicsindustrialcancerdiffraction limitMicroscopyTechnology News

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.