Search
Menu
Meadowlark Optics - Wave Plates 6/24 LB 2024

The Ones to Watch: Nanolasers Are Breaking New Ground – and Fast

Facebook X LinkedIn Email
Marie Freebody, Contributing Editor, [email protected]

Rapid advances in nanolaser research are making this area of photonics a very hot topic. Whether tackling high optical losses in nanocavities or achieving room-temperature operation, scientific groups worldwide are helping to bring the nanolaser closer to practical operation. Often, as science takes a step forward, it brings about new capabilities in not just one field, but in a multitude of others – and these areas are not always related to one another. This is particularly true when it comes to advances in photonics technologies, which seem to have almost endless applications. ...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: June 2011
    Glossary
    nano
    An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
    nanoplasmonics
    Nanoplasmonics is a branch of nanophotonics that focuses on the study and manipulation of optical phenomena at the nanoscale using plasmonic materials and structures. Plasmonics deals with the interaction between electromagnetic radiation and free electrons in metals or other conductive materials, leading to the formation of surface plasmons—collective oscillations of electrons at the metal-dielectric interface. Nanoplasmonics explores how these surface plasmons can be harnessed and...
    photolithography
    Photolithography is a key process in the manufacturing of semiconductor devices, integrated circuits, and microelectromechanical systems (MEMS). It is a photomechanical process used to transfer geometric patterns from a photomask or reticle to a photosensitive chemical photoresist on a substrate, typically a silicon wafer. The basic steps of photolithography include: Cleaning the substrate: The substrate, often a silicon wafer, is cleaned to remove any contaminants from its surface. ...
    spaser
    A spaser (surface plasmon amplification by stimulated emission of radiation) is a nanoscale device that generates coherent optical radiation at nanometer-scale dimensions. It is analogous to a laser but operates on the principles of surface plasmon resonance (SPR) rather than traditional optical gain mechanisms. Surface plasmons: Surface plasmons are collective oscillations of free electrons at the interface between a metal and a dielectric material, typically occurring when light...
    Basic ScienceBergmanbio-sensingChang-HasnainCommunicationsConnie Chang-Hasnaindata storageDavid BergmanFeaturesGeorgia State UniversityindustrialMaMarie FreebodyMark StockmanmetastableMicroscopyMikhail NoginovnanonanocavitiesnanoelectronicsnanolasersnanoplasmonicsNatureNature MaterialsNature Photonicson-chip photon sourceoptical communicationphotolithographyphotonic circuitsPhysical Review LettersPurdue UniversityRenmin MaSensors & DetectorsShalaevspasersurface plasmonsTel Aviv UniversityUniversity of California BerkeleyVladimir ShalaevXiang ZhangZhangLasers

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.