Search
Menu
Excelitas PCO GmbH - PCO.Edge 11-24 BIO LB

Spectroscopy Technique Widens Spectra for Measuring Molecular Structure

Facebook X LinkedIn Email
Researchers at the University of Tokyo have combined two current spectroscopy techniques — infrared (IR) absorption and Raman scattering spectrometry — to create complementary vibrational spectroscopy. The new technique employs IR absorption and Raman scattering spectroscopy simultaneously to allow researchers to measure the complete broadband vibrational spectra in the molecular fingerprint region with a single instrument. Advancements in ultrashort pulsed laser technology have made complementary vibrational spectroscopy possible, the Tokyo team said. The system is based on...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: September 2019
    Glossary
    nonlinear optics
    Nonlinear optics is a branch of optics that studies the optical phenomena that occur when intense light interacts with a material and induces nonlinear responses. In contrast to linear optics, where the response of a material is directly proportional to the intensity of the incident light, nonlinear optics involves optical effects that are not linearly dependent on the input light intensity. These nonlinear effects become significant at high light intensities, such as those produced by...
    raman spectroscopy
    Raman spectroscopy is a technique used in analytical chemistry and physics to study vibrational, rotational, and other low-frequency modes in a system. Named after the Indian physicist Sir C.V. Raman who discovered the phenomenon in 1928, Raman spectroscopy provides information about molecular vibrations by measuring the inelastic scattering of monochromatic light. Here is a breakdown of the process: Incident light: A monochromatic (single wavelength) light, usually from a laser, is...
    raman scattering
    Raman scattering, also known as the Raman effect or Raman spectroscopy, is a phenomenon in which light undergoes inelastic scattering when interacting with matter, such as molecules, crystals, or nanoparticles. Named after Indian physicist Sir C. V. Raman, who discovered it in 1928, Raman scattering provides valuable information about the vibrational and rotational modes of molecules and materials. Principle: When a photon interacts with a molecule, most of the scattered light retains...
    infrared absorption
    Infrared radiation absorbed by crystals as a result of the excitation of lattice vibrations in which ions having opposite charges move relative to one another. These vibrations take place in a narrow band of frequencies.
    Research & TechnologyeducationAsia-PacificLasersUniversity of TokyoLight SourcesOpticsspectroscopynonlinear opticsRaman spectroscopyRaman scatteringinfrared absorptioncomplementary vibrational spectroscopymedicalBiophotonicspharmaceuticalBioScanTech Pulse

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.