Search
Menu
AdTech Ceramics - Ceramic Packages 1-24 LB

Silicon-Based NIR Photodiodes Signal an Imaging Breakthrough

Facebook X LinkedIn Email
Photodiodes, the core component of image sensors, are indispensable in countless applications. Silicon is a favored material for crafting these components, but its sensitivity in the NIR range had been lacking. As a result, developers have had to use other materials which can be expensive and harmful to the environment. A project at the Fraunhofer Institute for Photonic Microsystems (IPMS) is now developing sensitive silicon-based photodiodes for the first time. Funded by Germany’s Federal Ministry of Education and Research, the three-year MesSi project will utilize €566,000...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: July 2024
    Glossary
    lidar
    Lidar, short for light detection and ranging, is a remote sensing technology that uses laser light to measure distances and generate precise, three-dimensional information about the shape and characteristics of objects and surfaces. Lidar systems typically consist of a laser scanner, a GPS receiver, and an inertial measurement unit (IMU), all integrated into a single system. Here is how lidar works: Laser emission: A laser emits laser pulses, often in the form of rapid and repetitive laser...
    near-infrared
    The shortest wavelengths of the infrared region, nominally 0.75 to 3 µm.
    BusinessR&DsiliconsemiconductorsSensors & DetectorsImagingspectroscopylidarnear-infraredNIRMaterialsmanufacturingscaleproductionfoundrymicroelectronicsFraunhoferIPMSInstitute for Photonic MicrosystemsEuropeTechnology News

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.