Search
Menu
Spectrogon US - Optical Filters 2024 LB

RUB Scientists Show Radiative Auger Process in Quantum Dots

Facebook X LinkedIn Email
BOCHUM, Germany, June 30, 2020 — Scientists at Ruhr-University Bochum, working with researchers based in Basel and Copenhagen, have demonstrated the connection between the radiative Auger process and quantum optics. The scientists experimentally confirmed the radiative Auger process in quantum dots, observing this process in the limit of a single photon and one Auger electron. They showed that quantum optics measurements with the radiative Auger emission can be used as a tool for investigating the dynamics of a single electron. Atoms consist of a positively charged core that is surrounded by one or more negatively...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: June 2020
    Glossary
    quantum optics
    The area of optics in which quantum theory is used to describe light in discrete units or "quanta" of energy known as photons. First observed by Albert Einstein's photoelectric effect, this particle description of light is the foundation for describing the transfer of energy (i.e. absorption and emission) in light matter interaction.
    quantum dots
    A quantum dot is a nanoscale semiconductor structure, typically composed of materials like cadmium selenide or indium arsenide, that exhibits unique quantum mechanical properties. These properties arise from the confinement of electrons within the dot, leading to discrete energy levels, or "quantization" of energy, similar to the behavior of individual atoms or molecules. Quantum dots have a size on the order of a few nanometers and can emit or absorb photons (light) with precise wavelengths,...
    nano
    An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
    Research & TechnologyeducationEuropeRuhr-University BochumLight SourcesMaterialsOpticsCommunicationsquantum opticsquantum dotssingle photonsnanosemiconductorsAuger processEuro News

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.