Search
Menu
Hamamatsu Corp. - Mid-Infrared LED 11/24 LB

Quantum Dots, Fluorescent Proteins Vie for Supremacy

Facebook X LinkedIn Email
Rubber-like material embedded with fluorescent proteins could replace an inorganic phosphor in white hybrid LEDs.

RUBÉN D. COSTA, IMDEA MATERIALS INSTITUTE

The first advances in color displays date to the mid ’50s with the development of the cathode ray tube1, the primary display technology until liquid crystal displays (LCDs) emerged a decade ago. For a brief period, plasma technology showed promise, but ultimately it could not compete with LCDs in applications that required high contrast and low power. The superiority of LCDs stems from the use of white inorganic light-emitting diodes (LEDs) instead of fluorescent tubes as energy-saving and highly efficient backlighting components. Nowadays, two approaches are the front runners of...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: May 2017
    Glossary
    electroluminescence
    The nonthermal conversion of electrical energy into light in a liquid or solid substance. The photon emission resulting from electron-hole recombination in a PN junction is one example. This is the mechanism employed by the injection laser.
    quantum dots
    A quantum dot is a nanoscale semiconductor structure, typically composed of materials like cadmium selenide or indium arsenide, that exhibits unique quantum mechanical properties. These properties arise from the confinement of electrons within the dot, leading to discrete energy levels, or "quantization" of energy, similar to the behavior of individual atoms or molecules. Quantum dots have a size on the order of a few nanometers and can emit or absorb photons (light) with precise wavelengths,...
    fluorescence
    Fluorescence is a type of luminescence, which is the emission of light by a substance that has absorbed light or other electromagnetic radiation. Specifically, fluorescence involves the absorption of light at one wavelength and the subsequent re-emission of light at a longer wavelength. The emitted light occurs almost instantaneously and ceases when the excitation light source is removed. Key characteristics of fluorescence include: Excitation and emission wavelengths: Fluorescent materials...
    DisplaysLEDselectroluminescencethin-film transistor (TFT)Light Sourcescolor down-convertersphotoluminescence quantum yields (PLQYs)photolithographicquantum dotsperovskite nanocrystalsfluorescencepolymersLasersRuben CostaIMDEA Materials InstituteFeatures

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.