Search
Menu
CMC Electronics - Advanced Low-Noise 2024 LB

Pollution-Controlling Gold Nanoparticles

Facebook X LinkedIn Email
ARGONNE, Ill., June 16, 2010 — Using silver chloride nanowires decorated with gold nanoparticles, a scientist at the US Department of Energy’s (DoE) Argonne National Laboratory has created visible-light catalysis that may decompose organic molecules in polluted water. The gold-coated silver chloride nanowires at the microscopic level. “Silver nanowires have been extensively studied and used for a variety of applications, including transparent conductive electrodes for solar cells and optoelectronic devices,” said nanoscientist Yugang Sun of Argonne’s Center for Nanoscale Materials....Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: June 2010
    Glossary
    nano
    An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
    ultraviolet
    That invisible region of the spectrum just beyond the violet end of the visible region. Wavelengths range from 1 to 400 nm.
    AmericasArgonne National LaboratoryBasic Scienceblue light wavelengthdecompose organic moleculesDepartment of Energyenergygold nanoparticlesgreen photonicsIllinoisLight Sourcesmethylene bluenanooptoelectronic devicespalladiumphotocatalytic propertiesplatinumpolluted waterResearch & Technologysilver chloride Nanowiressodium tetrachloroauratesolar cellstransparent conductive electrodesultravioletvisible-light catalysisYagang Sun

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.