The recent discovery of fluorescent silicon nanoparticles may ultimately help track the uptake of drugs by the body’s cells, according to researchers in the Department of Physics and Astronomy at the University of Leicester. “A key advantage of the new method is the independent control of the nanoparticles' size and their surface properties. The method is extremely versatile and produces the fluorescent suspensions in one go,” explained Dr. Klaus von Haeften. “The findings may revolutionize the performance of electronic chips while satisfying the increasing demand for higher integration densities.” This is a suspension of nanoparticles in a quarz-glass cell exposed to ultra violet light. (Images: Dr. Klaus von Haeften, University of Leicester) The nanoparticles contain just a few hundred silicon atoms and their fluorescence was discovered after mixing them with water. This resulted in stability in fluorescence intensity over more than a three month period. An interdisciplinary research project led by Chris Binns and Dr. Glenn Burley, professors with the Department of Chemistry, also incorporates this new method of synthesis. They are aiming to link nanoparticles to drugs involved in the diagnosis and treatment of cancer. “Nanotechnology, that is, the use of structures whose dimensions are on the nanometer scale, to build new materials and devices, appears to hold the key to future developments in a wide range of technologies, including materials, science, information technology and healthcare,” said Binns, professor of Nanoscience in the Department of Physics and Astronomy. “The approach developed in Leicester could be a key step towards the production of a variety of biomedical sensors that could help track the uptake of drugs by cells,” added von Haeften. The benign nature of silicon also makes the nanoparticles useful as fluorescent markers for tagging biologically sensitive materials. The light from a single nanoparticle can be readily detected. The results of this work were published this week Applied Physics Letters journal by researchers Anthony Brewer and von Haeften. For more information, visit: www.le.ac.uk