Search
Menu
Excelitas PCO GmbH - Industrial Camera 11-24 VS LB

Nanoplasmonics Enables Label-Free Measurement of Bacteria Formation

Facebook X LinkedIn Email
Using nanochip technology and a targeted beam of light, scientists have devised a real-time, label-free way to monitor biofilms, an important component in the search for alternatives to bacteria-resistant antibiotics. The team from the Okinawa Institute of Science and Technology (OIST) wanted to gain a better understanding of the biochemical reactions that allow bacteria to produce biofilms, which are slimy linked matrix structures. Finding no tools available that would allow them to monitor biofilm growth according to their requirements, the researchers modified an existing tool. ...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: August 2018
    Glossary
    plasmonics
    Plasmonics is a field of science and technology that focuses on the interaction between electromagnetic radiation and free electrons in a metal or semiconductor at the nanoscale. Specifically, plasmonics deals with the collective oscillations of these free electrons, known as surface plasmons, which can confine and manipulate light on the nanometer scale. Surface plasmons are formed when incident photons couple with the conduction electrons at the interface between a metal or semiconductor...
    nano
    An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
    nanoplasmonics
    Nanoplasmonics is a branch of nanophotonics that focuses on the study and manipulation of optical phenomena at the nanoscale using plasmonic materials and structures. Plasmonics deals with the interaction between electromagnetic radiation and free electrons in metals or other conductive materials, leading to the formation of surface plasmons—collective oscillations of electrons at the metal-dielectric interface. Nanoplasmonics explores how these surface plasmons can be harnessed and...
    Research & TechnologyeducationOpticsplasmonicsnanonanoplasmonicsSensors & DetectorsBiophotonicsmedicalpharmaceuticalantiobiotic resistancebacteria-resistantbiofilmOISTOkinawa Institute of Science and TechnologyLSPRlocalized surface plasmon resonanceBioScan

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.