Search
Menu
Edmund Optics - Manufacturing Services 8/24 LB

Microscopy Tool Adds ‘Color’ with Nanoscale Resolution

Facebook X LinkedIn Email
BERKELEY, Calif., Dec. 7, 2012 — Nanoscale objects can now be examined in full color, thanks to a new microscopy tip that delivers chemical details with a resolution once thought impossible. The nanotool could help scientists probe solar-to-electric energy conversion at its most fundamental level. Scientists can make and manipulate nanoscale objects with increasing control, but until now have been limited to black-and-white imagery for examining those objects. Information about nanoscale chemistry and interactions with light — the atomic-microscopy equivalent to color — has been out of reach. Lawrence...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: December 2012
    Glossary
    atomic force microscope
    An atomic force microscope (AFM) is a high-resolution imaging and measurement instrument used in nanotechnology, materials science, and biology. It is a type of scanning probe microscope that operates by scanning a sharp tip (usually a few nanometers in diameter) over the surface of a sample at a very close distance. The tip interacts with the sample's surface forces, providing detailed information about the sample's topography and properties at the nanoscale. atomic force microscope...
    nano
    An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
    optical fiber
    Optical fiber is a thin, flexible, transparent strand or filament made of glass or plastic used for transmitting light signals over long distances with minimal loss of signal quality. It serves as a medium for conveying information in the form of light pulses, typically in the realm of telecommunications, networking, and data transmission. The core of an optical fiber is the central region through which light travels. It is surrounded by a cladding layer that has a lower refractive index than...
    photonics
    The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
    vibrational spectroscopy
    Vibrational spectroscopy is a type of spectroscopy that involves the study of the vibrational states of molecules. It is used to obtain information about the molecular structure, bonding, and environment by analyzing how molecules interact with electromagnetic radiation, typically in the infrared (IR) or Raman regions of the spectrum. Energy levels: Vibrational spectroscopy probes the vibrational energy levels of molecules. These energy levels correspond to the various ways in which the...
    AFMAlex Weber-BargioniAmericasatomic force microscopeBasic ScienceBerkeley LabCaliforniacampanile tipchemical informationConsumerdiffraction limitenergyfiber opticsgreengreen photonicsImagingindium-phosphide nanowiresJames SchuckLawrence Berkeley National LaboratoryMicroscopymicroscopy tipMolecular Foundrynanonanoscale objectsnanoscale resolutionnanowiresnear-field opticsnear-field probesoptical alignmentoptical dataoptical fiberOpticsphotonicsResearch & Technologyscan probe microscopiessolar energy conversionsolar-to-electric conversionspatial informationspatial mapspectroscopysurface plasmonsvibrational spectroscopy

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.