Search
Menu
Meadowlark Optics - Wave Plates 6/24 LB 2024

Infrared Spectroscopy Moves to the Fast Lane

Facebook X LinkedIn Email
JOEL WILLIAMS, ASSOCIATE EDITOR
[email protected]

Researchers at the University of Tokyo have developed a technique to drastically increase the speed of infrared spectroscopy. The technique, called time-stretch infrared spectroscopy, surpasses dual-comb spectroscopy nearly 10× over. The research could enable observation of very quick chemical reactions, as well as new applications in high-speed imaging or label-free flow cytometry. “I have worked on developing dual-comb spectroscopy for a while and noticed its advantages and disadvantages, and realized that we need another technique to improve its measurement speed with...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: September 2020
    Glossary
    infrared spectroscopy
    The measurement of the ability of matter to absorb, transmit or reflect infrared radiation and the relating of the resultant data to chemical structure.
    infrared
    Infrared (IR) refers to the region of the electromagnetic spectrum with wavelengths longer than those of visible light, but shorter than those of microwaves. The infrared spectrum spans wavelengths roughly between 700 nanometers (nm) and 1 millimeter (mm). It is divided into three main subcategories: Near-infrared (NIR): Wavelengths from approximately 700 nm to 1.4 micrometers (µm). Near-infrared light is often used in telecommunications, as well as in various imaging and sensing...
    detector
    1. A device designed to convert the energy of incident radiation into another form for the determination of the presence of the radiation. The device may function by electrical, photographic or visual means. 2. A device that provides an electric output that is a useful measure of the radiation that is incident on the device.
    quantum cascade laser
    A quantum cascade laser (QCL) is a type of semiconductor laser that operates based on the principles of quantum mechanics. It is a versatile and powerful device used for emitting coherent light in the mid-infrared to terahertz range of the electromagnetic spectrum. Quantum cascade lasers were first proposed by Federico Capasso, Jerome Faist, Deborah Sivco, Carlo Sirtori, Albert Hutchinson, and Alfred Cho in 1994. Key features and principles of quantum cascade lasers: Quantum cascade...
    Research & Technologyspectroscopyinfrared spectroscopytime-stretchtime-stretch infrared spectroscopyinfrareddual comb spectroscopydual-comb spectroscopyUniversity of TokyoThe University of TokyoAsia-Pacificdetectorquantum cascade laserquantum cascadeTech Pulse

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.