Search
Menu
Opto Diode Corp. - Opto Diode 10-24 LB

Bending Light at will with Transformation Optics

Facebook X LinkedIn Email
Hank Hogan, Contributing Editor, [email protected]

Invisibility cloaks get all the publicity, but they may just be the beginning if the promise of transformation optics can be realized. The discipline could lead to smaller photonic and electronic devices and more cost-competitive solar cells – in addition to those long-sought-after invisibility cloaks. Achieving these and other advances assumes that the challenges confronting transformation optics can be successfully overcome. Chief among these are dealing with losses and building the tiny structures needed in metamaterials, the composite materials that make the field possible. ...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: May 2010
    Glossary
    chip
    1. A localized fracture at the end of a cleaved optical fiber or on a glass surface. 2. An integrated circuit.
    dielectric
    Exhibiting the characteristic of materials that are electrical insulators or in which an electric field can be sustained with a minimum dispersion of power. They exhibit nonlinear properties, such as anisotropy of conductivity or polarization, or saturation phenomena.
    excitation
    1. The process by which an atom acquires energy sufficient to raise it to a quantum state higher than its ground state. 2. More specifically with respect to lasers, the process by which the material in the laser cavity is stimulated by light or other means, so that atoms are converted to a semistable state, initiating the lasing process.
    invisibility cloak
    An invisibility cloak is technology that would render an object or individual invisible to the observer. In scientific research, efforts to create real-life invisibility cloaks have been explored using principles of optics and metamaterials. Metamaterials are artificially engineered materials with properties not found in naturally occurring materials. By manipulating the interaction of light with metamaterials, it is theoretically possible to bend or redirect light around an object,...
    light
    Electromagnetic radiation detectable by the eye, ranging in wavelength from about 400 to 750 nm. In photonic applications light can be considered to cover the nonvisible portion of the spectrum which includes the ultraviolet and the infrared.
    lithography
    Lithography is a key process used in microfabrication and semiconductor manufacturing to create intricate patterns on the surface of substrates, typically silicon wafers. It involves the transfer of a desired pattern onto a photosensitive material called a resist, which is coated onto the substrate. The resist is then selectively exposed to light or other radiation using a mask or reticle that contains the pattern of interest. The lithography process can be broadly categorized into several...
    microscope
    An instrument consisting essentially of a tube 160 mm long, with an objective lens at the distant end and an eyepiece at the near end. The objective forms a real aerial image of the object in the focal plane of the eyepiece where it is observed by the eye. The overall magnifying power is equal to the linear magnification of the objective multiplied by the magnifying power of the eyepiece. The eyepiece can be replaced by a film to photograph the primary image, or a positive or negative relay...
    nanoparticle
    A small object that behaves as a whole unit or entity in terms of it's transport and it's properties, as opposed to an individual molecule which on it's own is not considered a nanoparticle.. Nanoparticles range between 100 and 2500 nanometers in diameter.
    object
    The figure seen through or imaged by an optical system. It may contain structures, natural or artificial, or it may be the real or virtual image of an object formed by another optical system. In optics, an object should be considered as an aggregation of points or point sources that are individually imaged and collectively form an image.
    plasmon
    Calculated quantity of the entire longitudinal wave of a solid substance's electron gas.
    quantum dots
    A quantum dot is a nanoscale semiconductor structure, typically composed of materials like cadmium selenide or indium arsenide, that exhibits unique quantum mechanical properties. These properties arise from the confinement of electrons within the dot, leading to discrete energy levels, or "quantization" of energy, similar to the behavior of individual atoms or molecules. Quantum dots have a size on the order of a few nanometers and can emit or absorb photons (light) with precise wavelengths,...
    scattering
    Change of the spatial distribution of a beam of radiation when it interacts with a surface or a heterogeneous medium, in which process there is no change of wavelength of the radiation.
    spectral window
    A wavelength region of relatively high transmittance, surrounded by regions of low transmittance.
    spectrum
    See optical spectrum; visible spectrum.
    wavelength
    Electromagnetic energy is transmitted in the form of a sinusoidal wave. The wavelength is the physical distance covered by one cycle of this wave; it is inversely proportional to frequency.
    Albert PolmanAmericasAustralian National Universitybalance gainBasic Sciencechipcloakingconduction electronscrystalline silicon waferdefensedielectricdiffraction limitenergyExcitationFeaturesFOM Institute for Atomic and Molecular PhysicsHank Hoganhyperlensindustrialinvisibility cloakKylie R. CatchpolelightLight Sourceslithographymagnifymetallic nanoparticlemetamaterialsmicroscopeMicroscopyMikhail A. NoginovmimicrynanoparticlenonlinearNorfolk State Universiytobjectoptical lossoptical pathOpticsphoton interactionphotonsphotovoltaicsplanar magnifyingplasmonplasmonic solar cellsporpagationPurduePurdue UniversityPVquantum dotsrefractive indexscatteringsemiconductor layersilicon wafersolar cellsspectral windowspectrumsubdiffraction imagingthe Netherlandstransformation opticsTuningVladimir M. ShalaevWaferswavelengthLasersLEDs

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.