Search
Menu
Opto Diode Corp. - Opto Diode 10-24 LB
Photonics HandbookOptics

Aspheric Lenses: Design Considerations

Facebook X LinkedIn Email
This first of two articles will cover design and manufacturing options for aspheres; the second will include more detail on manufacturing and testing processes. These articles will provide the tools optics designers need to tailor their designs to the appropriate manufacturing process and to optimize the cost of component fabrication.

Jeremy Govier, Edmund Optics Inc.

Aspheric surfaces are powerful tools that combine the optical corrections of multiple lenses into a single element (Figure 1) and affect performance in ways that spherical optics cannot. For example, aspheres can correct for the spherical aberration inherent in a traditional lens. In the past, aspheric lenses were extremely difficult to manufacture. Advances in manufacturing and testing techniques have reduced this difficulty significantly, but manufacturing can still be a challenge. While it’s easier now than ever to manufacture aspheres, there are some very costly design pitfalls to...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Glossary
    metrology
    Metrology is the science and practice of measurement. It encompasses the theoretical and practical aspects of measurement, including the development of measurement standards, techniques, and instruments, as well as the application of measurement principles in various fields. The primary objectives of metrology are to ensure accuracy, reliability, and consistency in measurements and to establish traceability to recognized standards. Metrology plays a crucial role in science, industry,...
    spherical aberration
    Spherical aberration is an optical aberration that occurs when light rays passing through a lens or curved optical surface do not converge or diverge to a single focal point. Instead of focusing to a sharp point, the rays focus at different distances from the lens, resulting in a blurred or distorted image. This phenomenon is caused by the inherent shape of spherical lenses or mirrors, which have a spherical (curved) surface. In a lens with spherical aberration: Peripheral rays focus...
    aspheric lens
    An aspheric lens is a type of lens whose surface profiles deviate from the traditional spherical shape. Unlike spherical lenses, which have a constant curvature across their surfaces, aspheric lenses feature varying curvatures, allowing for improved optical performance and correction of aberrations. Aspheric lenses are designed to reduce spherical aberration and other optical aberrations, leading to enhanced image quality and reduced optical distortion. aspheric lens suppliers → ...
    computer numerically controlled grinding
    Computer numerically controlled (CNC) grinding is a manufacturing process that utilizes computerized controls and precision machining tools to remove material from a workpiece. In CNC grinding, a computer program is used to control the movements and operations of a grinding machine, allowing for highly accurate and repeatable grinding processes. This method is widely employed in the production of precision components with tight tolerances, such as those used in aerospace, automotive, medical,...
    polishing
    The optical process, following grinding, that puts a highly finished, smooth and apparently amorphous surface on a lens or a mirror.
    magnetorheological finishing
    Magnetorheological finishing (MRF) is a precision optics polishing technique used for shaping and finishing optical surfaces to achieve extremely high levels of smoothness and accuracy. It is commonly applied to lenses, mirrors, prisms, and other optical components in various industries, including astronomy, microscopy, and laser systems. The process involves using a magnetorheological fluid—a liquid containing ferrous (iron) particles—and a magnetic field to perform the...
    diamond turning
    Diamond turning, also known as diamond machining or diamond cutting, is a precision machining process used to produce high-quality optical surfaces and components with extremely tight tolerances. It involves the use of a single-point diamond cutting tool to remove material from a workpiece, typically made of metals, plastics, or optical materials like glass or crystals. In diamond turning, the cutting tool, which has a diamond tip, is controlled with high precision and moved relative to the...
    FeatureslensesmetrologyBiophotonicsImagingSensors & DetectorsLight SourcesOpticsMaterialsAmericasaspheresmultiple lensspherical aberrationaspheric lensaspheric manufacturingcomputer numerically controlled grindingpolishingMagnetorheological Finishingradius of curvatureplastic injection moldingdiamond turningprecision glass moldingJeremy GovierEdmund Optics

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.