Search
Menu
Meadowlark Optics - Wave Plates 6/24 LB 2024

Quantum State Opens Possibility for Advances in Optoelectronics

Facebook X LinkedIn Email
Scientists from Leipzig University and Nanyang Technological University showed that, contrary to popular scientific belief, light can generate electrical currents in a material even if the material is transparent to the frequency of the light that is shinned on it.

The team’s discovery could lead to new approaches to manipulating electronic behavior for multiple applications. “This opens new paradigms for constructing optoelectronic and photovoltaic devices, such as light amplifiers, sensors, and solar cells,” said Inti Sodemann Villadiego, a professor at Leipzig University.

Sodemann Villadiego and his colleagues investigated what are known as “Floquet Fermi liquid” states. A Fermi liquid is a special state of many quantum mechanical particles with properties that can be very different from those of ordinary classical liquids such as water at ambient temperature.
An abstract depiction of the Floquet Fermi Liquid. Courtesy of Li-Kun Shi.
An abstract depiction of the Floquet Fermi Liquid. Courtesy of Li-Kun Shi.

Fermi liquids can arise in a wide variety of situations, from common materials such as the electrical fluid of electrons in metals like gold or silver, to more exotic situations such as the fluid of Helium-3 atoms at low temperatures. They can display “spectacular properties”, such as becoming superconductors of electricity at low temperatures.

The Floquet Fermi liquid is a variant of this state realized when the particles of the fluid are periodically shaken, like what happens to electrons in metals when they are illuminated by ideally periodic light.

CMC Electronics - Advanced Near-Infrared 2024 MR

“In our publication, we explain several properties of these fluid states,” said Sodemann Villadiego. “To study them, we had to develop detailed theoretical models of complex states of electrons shaken by light, which is far from easy.”

The researchers identified properties of these fluid states, including their quantum oscillations under magnetic fields, which feature slow beating patterns of their amplitude reflecting the different areas of the Floquet Fermi surfaces. The observations, the researchers said, are consistent with those observed in microwave-induced resistance oscillation experiments.

The team also investigated the specific heat and thermodynamic density of these states and demonstrated that by controlling properties of the drive, such as its frequency, one can tune some of the Floquet Fermi surfaces toward nonequilibrium Van Hove singularities without changing the electron density.

“It is possible to drive electric currents by light even when the material has a vanishingly small absorption of such light. This is an important new insight,” said postdoctoral researcher Li-kun Shi.

The research was published in Physical Review Letters (www.doi.org/10.1103/PhysRevLett.132.146402).

Published: May 2024
Glossary
optoelectronics
Optoelectronics is a branch of electronics that focuses on the study and application of devices and systems that use light and its interactions with different materials. The term "optoelectronics" is a combination of "optics" and "electronics," reflecting the interdisciplinary nature of this field. Optoelectronic devices convert electrical signals into optical signals or vice versa, making them crucial in various technologies. Some key components and applications of optoelectronics include: ...
quantum
The term quantum refers to the fundamental unit or discrete amount of a physical quantity involved in interactions at the atomic and subatomic scales. It originates from quantum theory, a branch of physics that emerged in the early 20th century to explain phenomena observed on very small scales, where classical physics fails to provide accurate explanations. In the context of quantum theory, several key concepts are associated with the term quantum: Quantum mechanics: This is the branch of...
Research & TechnologyeducationEuropeAsia-PacificLeipzig UniversityNanyang Technological UniversityFermi surfaceFloquet Fermi liquid statesLight SourcesMaterialsoptoelectronicsphotovoltaicsSensors & Detectorsquantumsolarenergysemiconductorsphotocurrentselectrical currents

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.