Search
Menu
PI Physik Instrumente - Space Qualified Steering LB LW 12/24

Quantum Dots Suitable for Computing

Facebook X LinkedIn Email
Daniel S. Burgess

Quantum computers promise to enable immense computing power in systems based on units of information called qubits, which are similar to the binary bits in today's classical computers but which also can simultaneously represent both a 0 and a 1. Accordingly, investigators are looking for the tools to fabricate logic gates in systems governed by quantum mechanics.

A research team at the University of Michigan in Ann Arbor, the Naval Research Laboratory in Washington, Michigan State University in East Lansing and the University of California, San Diego, has demonstrated a logic gate in an optically excited semiconductor quantum dot that approximates the behavior of a standard controlled-NOT gate.

"Quantum dots are usually defined as nanostructures of semiconductors where the dimensions are small, relative to the characteristic quantum scale of the electronic wave function," explained Duncan G. Steel of the University of Michigan. In their experiment, he said, the researchers employed GaAs structures in which the appropriate scale length is the exciton Bohr diameter on the order of 20 nm. Such structures are potentially important for quantum computing because they offer a localized spatial domain that can be used to contain a quantum bit.

The researchers used one laser pulse to drive a quantum dot from the ground state to an exciton state. They used a second laser pulse to further drive the quantum dot into an entangled state involving the biexciton state, and they used a third pulse to read out the state of the system. The fidelity of the controlled-NOT gate was 0.7.

Although the setup is not scalable to work with more qubits, the experiment does demonstrate that semiconductors can perform quantum-logic operations, Steel said. The team next will investigate the use of the more robust quantum spin of electrons as a unit of information, with hopes of stringing together multiple quantum dots into a linear array for multiqubit operations.
Hamamatsu Corp. - Creating a Better Future MR 1-25

Published: October 2003
Glossary
quantum dots
A quantum dot is a nanoscale semiconductor structure, typically composed of materials like cadmium selenide or indium arsenide, that exhibits unique quantum mechanical properties. These properties arise from the confinement of electrons within the dot, leading to discrete energy levels, or "quantization" of energy, similar to the behavior of individual atoms or molecules. Quantum dots have a size on the order of a few nanometers and can emit or absorb photons (light) with precise wavelengths,...
binary bitsCommunicationsquantum computersquantum dotsqubitsResearch & Technologyspatial domainTech Pulse

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.