Search
Menu
PI Physik Instrumente - Space Qualified Steering LB LW 12/24

Probe IDs Atomic Fingerprint

Facebook X LinkedIn Email
CAMBRIDGE, Mass., Sept. 4, 2008 -- A new way of measuring a quantum system's energy level could help overcome a key barrier to the advent of superfast quantum computers, seen as potentially powerful tools for applications such as code breaking.

Researchers at the Massachusetts Institute of Technology developed the technique of amplitude spectroscopy to measure the energy of an artificial atom (a quantum system) by scanning the amplitude of the radiation instead of the tuning frequency and probing its response to a single, fixed frequency.

Ever since Nobel Prize-winning physicist Richard Feynman first proposed the theory of quantum computing more than two decades ago, researchers have been working toward building a quantum computer.
ArtificialAtom.jpg
The colorful patterns formed by the response of superconducting 'artificial atoms' to a new probe called amplitude spectroscopy serve as an identifying fingerprint for a given atom. (Image: MIT Lincoln Laboratory)
One approach involves superconducting devices that, when cooled to temperatures of nearly absolute zero (-459 °F,), can be made to behave like artificial atoms -- nanometer-scale "boxes" in which the electrons are forced to exist at specific, discrete energy levels (picture an elevator that can stop at the floors of a building but not in between). But traditional scientific techniques for characterizing -- and therefore better understanding -- atoms and molecules do not necessarily translate easily to artificial atoms, said William Oliver of MIT Lincoln Laboratory's Analog Device Technology Group and MIT's Research Laboratory for Electronics (RLE).

In the Sept. 4 issue of Nature, Oliver and colleagues describe their technique, which could fill that gap. Oliver's co-authors are lead author David Berns, a graduate student in physics and RLE; Mark Rudner, also a graduate student in physics; Sergio Valenzuela, a research affiliate at MIT's Francis Bitter Magnet Laboratory; Karl Berggren, the Emanuel E. Landsman Career Development Associate Professor in the Department of Electrical Engineering and Computer Science (EECS); professor Leonid Levitov of physics; and EECS professor Terry Orlando.

Characterizing energy levels is fundamental to the understanding and engineering of any atomic-scale device. Ever since Isaac Newton showed that sunlight could be dispersed into a continuous color spectrum, each color representing a different energy, this has been done through analysis of how an atom responds to different frequencies of light and other electromagnetic radiation -- a technique known generally as spectroscopy.

Excelitas PCO GmbH - PCO.Edge 11-24 BIO MR

But artificial atoms have energy levels that correspond to a very wide swath of frequencies, ranging from tens to hundreds of gigahertz. That makes standard spectroscopy costly and difficult to apply. "The application of frequency spectroscopy over a broad band is not universally straightforward," Oliver said.

The MIT team's amplitude spectroscopy approach provides a way to characterize quantum entities over extraordinarily broad frequency ranges. This procedure is "particularly relevant for studying the properties of artificial atoms," Oliver said.

Better knowledge of these superconducting structures could hasten the development of a quantum computer. Each artificial atom could function as a "qubit," or quantum bit, which can be in multiple energy states at once. That means it would not be simply a one or a zero (like the electronic switches in a conventional computer) but rather in a sort of hazy combination of both states (it's akin to the famous paradox of Schroedinger's quantum cat, which is considered to be both alive and dead at the same time until an observation is made, simultaneously creating and revealing its true condition). This odd behavior, inherent to the quantum nature of materials at the atomic level, is what gives quantum computing such promise as a paradigm-busting advance.

Amplitude spectroscopy gleans information about a superconducting artificial atom by probing its response to a single, fixed frequency that is strategically chosen to be, as Oliver puts it, "benign." This probe pushes the atom through its energy-state transitions. In fact, the atoms can be made to jump between energy bands at practically unlimited rates by adjusting the amplitude of the fixed-frequency source.

The radiation emitted by the artificial atom in response to this probe exhibits interference patterns. These patterns, which Oliver calls "spectroscopy diamonds" because of their striking geometric regularity, serve as fingerprints of the artificial atom's energy spectrum.

The work was funded by the Air Force Office of Scientific Research, the Laboratory for Physical Sciences, the Department of Defense, and the US government.

For more information, visit: www.mit.edu

Published: September 2008
Glossary
frequency
With reference to electromagnetic radiation, the number of crests of waves that pass a fixed point in a given unit of time, in light or other wave motion. Expressed in hertz or cycles per second.
nano
An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
photonics
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
qubit
A qubit, short for quantum bit, is the fundamental unit of information in quantum computing and quantum information processing. Unlike classical bits, which can exist in one of two states (0 or 1), qubits can exist in multiple states simultaneously, thanks to a quantum property known as superposition. This unique feature enables quantum computers to perform certain types of calculations much more efficiently than classical computers. Key characteristics of qubits include: Superposition: A...
radiation
The emission and/or propagation of energy through space or through a medium in the form of either waves or corpuscular emission.
amplitudeamplitude spectroscopyartificial atomatomatomicBasic Sciencecode breakingCommunicationsdefenseelectromagneticenergyfrequencyLincoln LabMITnanoNews & Featuresphotonicsquantum bitquantum computersquantum systemqubitradiationspectroscopysuperconductingTuningWilliam Oliver

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.