Search
Menu
Lambda Research Optics, Inc. - Limited Time Offer

Printable Photodiodes Could Be Used for Visible Light Communication

Facebook X LinkedIn Email
A team at Karlsruhe Institute of Technology (KIT) has demonstrated a multichannel visible light communication system based on an organic photodetector array capable of demultiplexing optical signals without the need for additional optical filters.

The researchers engineered a special ink formulation to print wavelength-selective bulk heterojunction organic photodetectors onto flexible carriers. They incorporated nonfullerene acceptors in a transparent polymer donor matrix to narrow and tune the optical response in the visible range without optical filters or light management techniques.

In the KIT team’s approach, the optical properties of the bulk heterojunction system are decoupled from the viscoelastic ink properties. The spectral response of the device depends solely on the choice of nonfullerene acceptor, while the polymer donor dictates the properties of the ink. This removes any interdependence between processing parameters and the optical properties of the active layer. It eliminates the need for devising new ink formulations when selecting a different nonfullerene acceptor and simplifies the process of developing and printing filterless, wavelength-selective organic photodetectors.

Color-selective organic light sensors produced by inkjet printing with semiconducting inks. Courtesy of Noah Strobel, KIT.

Color-selective organic light sensors produced by inkjet printing with semiconducting inks. Courtesy of Noah Strobel, KIT.


Meadowlark Optics - Wave Plates 6/24 MR 2024
The printed organic photodiodes exhibited excellent charge-carrier dynamics in spectroscopic tests. The color selectivity and high performance of the photodiodes were demonstrated in a filterless visible light communication system capable of demultiplexing intermixed optical signals.

The team believes that the simplicity of its approach, which simultaneously addresses functionality and fabrication, could offer a path toward facile integration of wavelength-selective optical sensing elements in future printed electronic applications. It could find particular use in applications requiring a high degree of personalization, high fabrication throughput, and cost-effectiveness, such as wearable devices, mobile sensor nodes, or health care monitoring systems.

“High numbers of these photodetectors of any design can be produced on flexible, light materials. Hence, they are particularly suited for mobile devices,” researcher Noah Strobel said.

The research was published in Advanced Materials (www.doi.org/10.1002/adma.201908258). 

Published: February 2020
Glossary
3d printing
3D printing, also known as additive manufacturing (AM), is a manufacturing process that builds three-dimensional objects layer by layer from a digital model. This technology allows the creation of complex and customized structures that would be challenging or impossible with traditional manufacturing methods. The process typically involves the following key steps: Digital design: A three-dimensional digital model of the object is created using computer-aided design (CAD) software. This...
Research & TechnologyeducationEuropeKarlsruhe Institute of TechnologyLight SourcesMaterialsOpticsSensors & Detectors3d printingorganic photodiodesvisible light communicationprinted electronicswearableswavelength-selectivewearable devicessemiconductorsTech Pulse

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.