Search
Menu
Ohara Corp. - Optical Glass, Polish substrates 2024 LB

Pollution-Controlling Gold Nanoparticles

Facebook X LinkedIn Email
Using silver chloride nanowires decorated with gold nanoparticles, a scientist at the US Department of Energy’s (DoE) Argonne National Laboratory has created visible-light catalysis that may decompose organic molecules in polluted water.


The gold-coated silver chloride nanowires at the microscopic level.

“Silver nanowires have been extensively studied and used for a variety of applications, including transparent conductive electrodes for solar cells and optoelectronic devices,” said nanoscientist Yugang Sun of Argonne’s Center for Nanoscale Materials. “By chemically converting them into semiconducting silver chloride nanowires, followed by adding gold nanoparticles, we have created nanowires with a completely new set of properties that are significantly different from the original nanowires.”

Traditional silver chloride photocatalytic properties are restricted to ultraviolet and blue light wavelengths, but with the addition of the gold nanoparticles, they become photocatalytic in visible light. The visible light excites the electrons in the gold nanoparticles and initiates reactions that culminate in charge separation on the silver chloride nanowires. Tests have already shown that gold-decorated nanowires can decompose organic molecules such as methylene blue.

LightPath Technologies -  Germanium Alternative1-25 MR

“If you were to create a film of gold-decorated nanowires and allow polluted water to flow through it, the organic molecules may be destroyed with visible irradiation from conventional fluorescent light bulbs or the sun,” Sun said.


Argonne scientist Yugang Sun prepares a sample of silver chloride nanowires at the Center for Nanoscale Materials.

Sun started with traditional silver nanowires that were oxidized with iron chloride to create silver chloride nanowires. A sequential reaction with sodium tetrachloroaurate deposited the gold nanoparticles on the wires.

Sun said it is possible to use a similar mechanism to deposit other metals such as palladium and platinum onto the silver chloride nanowires and create new properties, such as the ability to catalyze the splitting of water into hydrogen with sunlight.

A paper on this research was published in the Journal of Physical Chemistry C.

Funding was provided by the US Department of Energy Office of Science.

For more information, visit:  www.science.doe.gov 



Published: June 2010
Glossary
nano
An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
ultraviolet
That invisible region of the spectrum just beyond the violet end of the visible region. Wavelengths range from 1 to 400 nm.
AmericasArgonne National LaboratoryBasic Scienceblue light wavelengthdecompose organic moleculesDepartment of Energyenergygold nanoparticlesgreen photonicsIllinoisLight Sourcesmethylene bluenanooptoelectronic devicespalladiumphotocatalytic propertiesplatinumpolluted waterResearch & Technologysilver chloride Nanowiressodium tetrachloroauratesolar cellstransparent conductive electrodesultravioletvisible-light catalysisYagang Sun

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.