A new £600,000 ($1.2 million) facility for Northumbria and Newcastle universities to teach and conduct research into photonic and radio-frequency (RF) communications, microwave communications and microwave holography was officially opened this week at Northumbria's School of Computing, Engineering & Information Sciences (CEIS). The facility, which includes several labs, was funded by the Higher Education Funding Council for England and has been equipped with electronic instruments -- including oscilloscopes, spectrum and network analyzers, optical test equipment and radio frequency and microwave imaging technology -- from test and measurement company Agilent Technologies. The labs will be used by faculty and students at Northumbria and Newcastle universities, which are both located in Newcastle upon Tyne.British government official Alan Duncan with PhD student Shirt Fun Ooi in the photonics lab, part of $1.2 million in new lab facilities officially opened Wednesday at the School of Computing, Engineering & Information Sciences at Northumbria University in Newcastle upon Tyne, England. (Photo: Northumbria University) The labs were officially opened May 2 by Shadow Secretary of State, Department of Trade and Industry and Shadow Minister for Tyneside Alan Duncan, MP. The photonic and RF research laboratory is the first photonic lab of its kind in the North of England, officials said, and will showcase the latest design and measurement tools for communications research into new photonic networks, switching, free-space optics and RF technologies. The new technology in the microwave communications and holography research labs puts them among the best-equipped labs in the United Kingdom for the design of microwave circuitry and research into the uses of microwave imaging, including for the detection of breast cancer tumors and concealed weapons, officials said. Professor Alistair Sambell, CEIS dean, welcomed the opening of the new labs. He said in a statement, "There is currently tremendous growth in the fields of wired and wireless communications, especially the Internet and increasing demand for mobile handsets with functions such as cameras and MP3 players, which are smaller, cheaper, and with low power consumption. These facilities will help us develop our research in these areas. “The microwave imaging technology we now have will position Northumbria as one of the leading universities in terms of facilities in this field. We are currently developing a microwave-based technique that can generate holographic high-quality images of hidden objects, such as breast cancer tumors, in our microwave imaging lab, and the new equipment may mean this method may reach the clinic trial stage sooner than we’d initially hoped," Sambell said. The university's ultimate goal is the creation of a fast 3-D microwave imaging technique that would have medical, security and industrial applications, he said. For more information, visit: www.northumbria.ac.uk