Search
Menu
Lambda Research Optics, Inc. - DFO

Molecule-Scale Energy Transfer Studied

Facebook X LinkedIn Email
SCRANTON, Pa., Nov. 12 -- Researchers have demonstrated an innovative research technique to complete a detailed measurement of how heat energy is created at the molecular level, which they say could have far-reaching implications for developing nanodevices in health care, computer and other industries.

The work is a collaborative effort involving the University of Scranton, in Pennsylvania, and the University of Illinois at Urbana-Champaign. Results of the research were published last month in the journal Science.

The researchers used vibrational spectroscopy with picosecond time resolution to monitor the flow of energy across surfactant molecules that separate droplets of confined water from a nonpolar liquid phase. They showed that the surfactant layer must be analyzed in terms of its vibrational couplings, rather than by ordinary heat conduction. The researchers said they provided the first detail of the precise pathways for interfacial vibrational energy in both time and space resolution.

"This is the first time that anyone has measured how a specific motion of a molecule on one side of a molecular wall causes molecules within the wall to move," said John Deak, PhD, assistant professor of chemistry at The University of Scranton. "In nanotechnology, researchers design materials whose properties originate in clusters of molecules on the nanometer level. This research can be used to help us better understand how molecules interact on these dimensions."

Dana Dlott, PhD, a chemistry professor at the University of Illinois, said, "The experiment detailed the pathways for energy transfer and also provided the tools to study other molecules. In designing nanoscale devices, the shapes of the molecules must be designed not only to be small and fast, but also to move heat effectively. There is no reason that this technique is not applicable to just about any molecule."

For more information, visit: www.scranton.edu


Hamamatsu Corp. - Mid-Infrared LED 11/24 MR

Published: November 2004
Glossary
nanotechnology
The use of atoms, molecules and molecular-scale structures to enhance existing technology and develop new materials and devices. The goal of this technology is to manipulate atomic and molecular particles to create devices that are thousands of times smaller and faster than those of the current microtechnologies.
vibrational spectroscopy
Vibrational spectroscopy is a type of spectroscopy that involves the study of the vibrational states of molecules. It is used to obtain information about the molecular structure, bonding, and environment by analyzing how molecules interact with electromagnetic radiation, typically in the infrared (IR) or Raman regions of the spectrum. Energy levels: Vibrational spectroscopy probes the vibrational energy levels of molecules. These energy levels correspond to the various ways in which the...
Basic SciencenanodevicesnanotechnologyNews & FeaturespicosecondspectroscopyUniversity of Illinoisuniversity of scrantonvibrational spectroscopy

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.