Search
Menu
Hamamatsu Corp. - Mid-Infrared LED 11/24 LB

Making Gold in a Polyvinyl Alcohol Film

Facebook X LinkedIn Email
Anne L. Fischer

Fabricating gold nanoparticles in a polymer film by laser excitation is not new, but the problem has been that the high energy of the laser can damage the thin film. Researchers at Osaka University in Japan were interested in this method, however, because it could produce nanoparticles with a resolution of about half the wavelength of the irradiation.

Nano Update 2_Fig1.jpg

Figure 1. The polyvinyl alcohol films, which contain HAuCl4 (1 mM) in the presence of benzophenone, exhibit absorbance spectra at 30 minutes after the irradiation with the single laser (black line) and the two two-color lasers (red line).


Based on this, they knew that micron-size optical and electronic devices can be constructed in a specific region of the film. They modified the fabrication method, using two-color, two-laser flash photolysis to generate benzophenone ketyl excited radicals.

To produce the radicals, which serve as a reducing agent, they used two Nd:YAG lasers sequentially at two wavelengths. The first, nanosecond laser, from Quantel SA of Les Ulis, France, generated radicals in the ground state, which were then excited by the second, picosecond laser, from Continuum Inc. of Santa Clara, Calif.

DataRay Inc. - ISO 11146-Compliant

Nano Update 2_Fig2.jpg
Figure 2. This schematic shows the process for two-color, two-laser fabrication of gold nanoparticles. The inset photo shows polyvinyl alcohol films containing HAuCl4 and benzophenone after irradiation with a single laser and the two-color lasers.


The damage to the polyvinyl alcohol film was inhibited because it cannot absorb the longer wavelength of the second laser until the radicals have been generated, and the irradiation of the first laser generates the radicals with relatively lower power.

According to professor Tetsuro Majima, these metal nanoparticles-polymer thin films are attractive for use in optics and electronic devices. The group is working to apply the two-color, two-laser method for micropatterning to small optics and electronic devices.

Journal of the American Chemical Society, July 4, 2006, pp. 6361-6366.

Published: August 2006
Glossary
nano
An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
thin film
A thin layer of a substance deposited on an insulating base in a vacuum by a microelectronic process. Thin films are most commonly used for antireflection, achromatic beamsplitters, color filters, narrow passband filters, semitransparent mirrors, heat control filters, high reflectivity mirrors, polarizers and reflection filters.
wavelength
Electromagnetic energy is transmitted in the form of a sinusoidal wave. The wavelength is the physical distance covered by one cycle of this wave; it is inversely proportional to frequency.
Featuresnanonanoparticlesthin filmwavelength

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.