Search
Menu
Excelitas PCO GmbH - PCO.Edge 11-24 BIO LB

Machine Learning and Computer Vision Lead to Smarter, More Precise Crop Management

Facebook X LinkedIn Email
NORWICH, England, June 12, 2019 — Researchers at the Earlham Institute (EI), working with G’s Growers in Ely, England, have developed a machine learning platform that works with computer vision and ultra-large-scale images taken from the air to help categorize lettuce crops in fields.

To quantify millions of in-field lettuces acquired by fixed-wing light aircraft equipped with sensors, the researchers customized the platform, called AirSurf, by combining computer-vision algorithms and a deep-learning classifier trained with over 100,000 labeled lettuce signals. The tailored platform, AirSurf-Lettuce, demonstrated the capability to score and categorize iceberg lettuces with an accuracy of more than 98%.

The team also developed novel analysis functions to map lettuce size distribution across the field, based on associated GPS-tagged harvest regions, to enable growers to precisely track size distribution of lettuce in fields in order to improve yield and crop marketability before the harvest. AirSurf-Lettuce is able to measure iceberg lettuce in a high-throughput mode, identify the precise quantity and location of lettuce plants, and distinguish whether lettuce heads are small, medium, or large.

Machine learning for crop optimization, Earlham Institute and G's Growers.
Transplanting lettuce at Gs Growers plantation field, near Ely, England. Courtesy of G’s Growers.


Opto Diode Corp. - Detector Spotlight 10-24 MR
“This cross-disciplinary collaboration integrates computer vision and machine learning with the lettuce growing business to demonstrate how we can improve crop yields using machine learning,” said scientist Alan Bauer, a member of the Zhou Group at EI.

Using technology like AirSurf could help growers to understand the variability in their fields and crops at a higher level of detail than is possible with previous techniques. “The decisions that can then be taken from this information, such as varying applications of inputs and irrigation, changing harvest strategies, and planning the optimum time to sell crop, will all contribute toward increasing on farm yields and improving farm productivity,” said Jacob Kirwan, innovation manager at G’s Growers.

The AirSurf technology could be applied to other crops, said the researchs, widening its potential for making a positive impact across the agri-food sector.

The research was published in Horticulture Research (https://doi.org/10.1038/s41438-019-0151-5). 

Published: June 2019
Glossary
deep learning
Deep learning is a subset of machine learning that involves the use of artificial neural networks to model and solve complex problems. The term "deep" in deep learning refers to the use of deep neural networks, which are neural networks with multiple layers (deep architectures). These networks, often called deep neural networks or deep neural architectures, have the ability to automatically learn hierarchical representations of data. Key concepts and components of deep learning include: ...
machine learning
Machine learning (ML) is a subset of artificial intelligence (AI) that focuses on the development of algorithms and statistical models that enable computers to improve their performance on a specific task through experience or training. Instead of being explicitly programmed to perform a task, a machine learning system learns from data and examples. The primary goal of machine learning is to develop models that can generalize patterns from data and make predictions or decisions without being...
computer vision
Computer vision enables computers to interpret and make decisions based on visual data, such as images and videos. It involves the development of algorithms, techniques, and systems that enable machines to gain an understanding of the visual world, similar to how humans perceive and interpret visual information. Key aspects and tasks within computer vision include: Image recognition: Identifying and categorizing objects, scenes, or patterns within images. This involves training...
Research & TechnologyeducationEuropeEarlham InstituteImagingcamerasdeep learningmachine learningcomputer visionPrecision agricultureAir-Surfaerial imagingSensors & Detectorsenvironment

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.