Search
Menu
Lumibird - Laser Diodes & Components 1-25 LB

Hamamatsu Edges Closer to Compact Laser Fusion Source

Facebook X LinkedIn Email
Building on an existing multiyear R&D pursuit to establish technology that produces laser pulses at 250 J with a repetition rate of 10 Hz, Hamamatsu Photonics has developed a laser system that produced pulses with an energy of 100 J at a repetition rate of 10 Hz.  

In a report detailing the advancement, Hamamatsu said that practical laser fusion requires pulsed lasers with energy as high as 1 MJ to irradiate the fusion fuel at a high repetition rate of 10 Hz. In 2021, Hamamatsu developed an industrial pulsed laser system that produced a pulse energy of 250 J at a repetition rate of 0.2 Hz and an average output power of 50 W, which it said was the highest energy to date among laser diode- (LD)-pumped lasers. Since that result, the company said it has worked to increase repetition rate. However, increasing the repetition rate also raises the temperature of the laser medium and degrades its optical characteristics.
External view of the laser system producing laser pulses of 100 J at 10 Hz. Hamamatsu's result builds on a 2021 laser system that produced a pulse energy of 250 J at a repetition rate of .2 Hz. Courtesy of Hamamatsu Photonics.
External view of the laser system producing laser pulses of 100 J at 10 Hz. Hamamatsu’s result builds on a 2021 laser system that produced a pulse energy of 250 J at a repetition rate of 0.2 Hz. Courtesy of Hamamatsu Photonics. 
The company’s development aim is a high-energy, high-repetition-rate pulsed laser system using laser amplifiers in which the laser medium is pumped by LD modules and efficiently cooled by helium gas. The current result stems from an improvement to the cooling mechanism for the laser medium, to increase the flow of helium gas and, in this way, enhance the cooling capacity. Hamamatsu also optimized the output of the pumping LD modules to prevent the temperature of the laser medium from rising.

Perkins Precision Developments - Custom Laser Mirrors MR 4/24

The result is the current system, which had an output power of 1 kW.

Hamamatsu said that beyond confirmation of the possibility of increasing the average output power by scaling up the laser system, the results are also expected to contribute to new research in basic science.

The company will present the results of this study at a symposium and general lecture at the 43rd Annual Meeting of the Laser Society of Japan to be held Jan. 18, 19, and 20.


Published: January 2023
Glossary
fusion
1. The combination of the effects of two or more stimuli in any given sense to form a single sensation. With respect to vision, the perception of continuous illumination formed by the rapid successive presentation of light flashes at a specified rate. 2. The transition of matter from solid to liquid form. 3. With respect to atomic or nuclear fusion, the combination of atomic nuclei, under extreme heat, to form a heavier nucleus.
laser cooling
Laser cooling is a technique used to reduce the temperature of a material or a collection of atoms or molecules by using laser light. It is based on the principle of selective absorption and emission of photons by atoms or molecules. In laser cooling, specially tuned laser beams are directed at the material or atoms. When these atoms absorb photons from the laser light, they gain momentum in the direction of the laser beam due to the momentum carried by the photons. However, according to...
LasersLight Sourcesfusionlaser amplifierscomponentslaser diodeshamamatsuHamamatsu Corp.high power laserbeam steeringOpticsAsia PacificResearch & TechnologyeducationBusinessheliumlaser coolinglaser systemshigh powered laserhigh power laser diodesTechnology News

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.