Search
Menu
Edmund Optics - Manufacturing Services 8/24 LB

Grant Funds Ultrafast Laser Development

Facebook X LinkedIn Email
NORWICH, England, March 6, 2012 — University of East Anglia scientists are developing ultrafast laser equipment capable of generating femtosecond-scale intense light pulses from the ultraviolet to the infrared for 2-D electronic spectroscopy experiments. 

Funded by a £466,000 (about $734,000) grant from the Engineering and Physical Sciences Research Council, the laser will be used for 2-D electronic spectroscopy experiments that look at the very fastest reactions. By studying how energy transfers in natural and artificial systems such as proteins and molecular materials, researchers will be able to help the design of new nanomachines and solar power collectors.

“With this equipment, we will be able to develop experiments which probe in exquisite detail the link between the efficiency of light-driven processes in natural and synthetic systems and the underlying molecular architecture,” said Steve Meech, a chemistry professor at UEA.

Two-dimensional electronic spectroscopy is analogous to the 2-D nuclear magnetic resonance (NMR) method. The technique uses ultrafast visible light pulses to reveal coupling between electronic states, whereas NMR uses radio-frequency pulses to measure couplings between nuclear spins.

Most ultrafast experiments 20 years ago relied upon amplified dye lasers, which were difficult to use and unstable. With the discovery of the Ti:sapphire laser, a new family of experiments became possible.

“It is because of the amazing stability and reliability of these modern devices that we can even consider 2-D optical experiments, which may take days to run,” Meech said.

“The grant for equipment made by our strategic equipment panel will give UEA the tools they need, but EPSRC has also allocated a further £613,000 for staff and collaborations to drive this research forward,” said Lesley Thompson, the council’s director of research base.

For more information, visit: www.uea.ac.uk
PI Physik Instrumente - Alignment Engines MR ROS 1-25

Published: March 2012
Glossary
solar radiation
Radiation from the sun that is made up of a very wide range of wavelengths, from the long infrared to the short ultraviolet with its greatest intensity in the visible green at about 5000 Å. The solar radiation the earth receives is more restricted, generally to the visible and near-infrared, as the air strongly absorbs the wavelengths located at either end of the spectrum.
ti:sapphire laser
A Ti:sapphire laser is a type of solid-state laser that utilizes a titanium-doped sapphire crystal as the gain medium. The name Ti:sapphire comes from the combination of titanium (Ti) as the dopant and sapphire (Al2O3) as the host material. Ti:sapphire laser suppliers → This type of laser is known for its tunability across a broad range of wavelengths in the visible and near-infrared spectrum, typically from around 680 nanometers (deep red) to 1100 nanometers (near-infrared)....
2-D electronic spectroscopy2-D nuclear magnetic resonanceamplified dye lasersBasic ScienceBusinessenergyEngineering and Physical Sciences Research CouncilEnglandEPSRCEuropegreen photonicsLesley ThompsonnanomachinesNMRsolar power collectorssolar radiationspectroscopySteve MeechTi:sapphire laserUEAultrafast lasersUniversity of East AngliaLasers

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.