Search
Menu
PI Physik Instrumente - Space Qualified Steering LB LW 12/24

Femtolaser Pulse Creates 3-D Nanostructures

Facebook X LinkedIn Email
A new fabrication process using femtosecond lasers creates 3-D nanostructures in materials, an essential step toward creating invisibility cloaks and other advanced materials that bend light in unusual ways.


The experimental setup in Prof. Eric Mazur's laser laboratory at Harvard. Using femtosecond lasers, Mazur and colleagues have developed a new nanofabrication process for use in creating metamaterials. (Image: Eliza Grinnell, Harvard SEAS)

Researchers in Eric Mazur's laboratory at the Harvard School of Engineering and Science (SEAS) fired a femtosecond laser, which releases incredibly bright flashes of light that last 5 x 10-14, s, at a glass slide coated with a mixture of silver nitrate, water and PVP, a water-soluble polymer. The laser blast changes the electrical, physical and optical properties of the slide, and photoreduces the silver ions on the slide into nanocrystals of silver metal suspended on the polymer.

Previous attempts to create a 3-D structure failed because the coating was not quite right. When the researchers used only the silver nitrate and water, there was no lattice support for the silver atoms, they said.


A new laser fabrication technique developed at Harvard allows for the creation of precisely arranged silver nanoparticles that are disconnected in 3D and supported by a polymer matrix. The new technique may prove critical in the development of metamaterials. (Image: Kevin Vora)


Sheetak -  Cooling at your Fingertip 11/24 MR
"Normally, when people use femtosecond lasers in fabrication, they’re creating a woodpile structure: something stacked on something else, being supported by something else. If you want to make an array of silver dots, however, they can’t float in space," Mazur said. Ethanol and the PVP polymer were added to the solution to provide support to the structure, but reactions were fast and uncontrollable. Removing the ethanol solved the problem entirely.

"What was most surprising about it was how simple it is. It was a matter of using less," Mazur said.


Kevin Vora examines a sample in the lab. Vora and colleagues at SEAS led by Prof. Eric Mazur developed a fabrication process that enables the creation of nanostructures patterned in three dimensions. (Image: Eliza Grinnell, Harvard SEAS)

The new fabrication process advances nanoscale metal lithography into three dimensions, and does it at a resolution high enough to be practical for metamaterials.

"This work demonstrates that we can create silver dots that are disconnected in X, Y, and Z," said Kevin Vora, a graduate student working on the project. "There’s no other technique that feasibly allows you to do that."

The work, which was supported by the Air Force Office of Scientific Research, is described in Applied Physics Letters.

For more information, visit: seas.harvard.edu

Published: March 2012
Glossary
invisibility cloak
An invisibility cloak is technology that would render an object or individual invisible to the observer. In scientific research, efforts to create real-life invisibility cloaks have been explored using principles of optics and metamaterials. Metamaterials are artificially engineered materials with properties not found in naturally occurring materials. By manipulating the interaction of light with metamaterials, it is theoretically possible to bend or redirect light around an object,...
nano
An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
3-D nanostructuresAmericasEric Mazurfemtolaserfemtosecond lasersHarvard SEASindustrialinvisibility cloakKevin Voralaser researchLaser ScienceMassachusettsMaterials & Chemicalsmetamaterialsnanonanolithographynanostructuresoptical propertiesResearch & TechnologyLasers

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.