Search
Menu
Hamamatsu Corp. - Creating a Better Future LB 1-25

Excitons Form Luminescent Rings

Facebook X LinkedIn Email
Two independent teams have reported observing photoluminescent rings from indirect excitons in coupled quantum wells. Excitons are boson particles similar to a hydrogen atom, except with a charge hole instead of a proton. Indirect excitons are created when the electron and hole pair divides between two coupled wells. This separation leads to a longer lifetime for the particle -- up to 100 ns.

The groups created the excitons by directing an approximately 630-nm laser beam into the well structures. The particles spread out from this spot in a dark state and then began to luminesce up to hundreds of microns away, creating a visible ring around the laser spot.

It is not known how or why the excitons migrate or luminesce in such a way, although both teams report that excitation density has a direct effect upon the distance that the ring forms from the laser spot.

A team from the Lawrence Berkeley National Laboratory in California, the Russian Academy of Sciences in Chernogolovka and the University of California at Santa Barbara and at Berkeley, demonstrated this phenomenon in GaAs/AlGaAs quantum wells. Scientists from the University of Pittsburgh and from Bell Labs in Murray Hill, N.J., used InGaAs quantum wells. Both groups reported their results in the Aug. 15 issue of Nature.
Lambda Research Optics, Inc. - CO2 Replacement Optics

Published: October 2002
Research & Technology

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.