Search
Menu
LightPath Technologies -  Germanium Alternative1-25 LB

Etched Titania Films Could Speed Production of Integrated Photonics

Facebook X LinkedIn Email
Tokyo Metropolitan University researchers have achieved high-throughput production of thin, ordered, titania through-hole membranes. The method relies on anodization — a process that increases the thickness of a natural oxide layer on the surface of metal parts, in this case mask-etched titanium — and charts a course for industrial production of ordered titania membranes for integrated photonics.

Also known as titanium dioxide, titania is commonly used to make photonic crystals, as the reflective layers in mirrors, as a coating for self-cleaning and anti-fogging surfaces, as a pigment, and as a UV light absorber (often as the active ingredient in sunscreens). In the presence of light, it also accelerates chemical reactions, making it a valuable substance for industrial applications such as helping break down harmful pollutants in the air when embedded in building materials.

upper) Illustration of new high-throughput process for making ordered through-hole membranes out of titania. (lower left) Scanning electron micrograph of titania through-hole membrane. (lower right) Cross-sectional scanning electron micrograph of through-hole membrane. Courtesy of Tokyo Metropolitan University.
Top: A new high-throughput process for making ordered through-hole membranes from titania. Bottom left: Scanning electron micrograph of titania through-hole membrane. Bottom right: Cross-sectional scanning electron micrograph of through-hole membrane. Courtesy of Tokyo Metropolitan University.
Anodization in the newly introduced method, described by Takashi Yanagishita and Hideki Masuda, occurred on mask-etched titanium. The scientists delivered an application of heat to an etched titanium template, on which they grew a titania layer with ordered arrays of holes. The delivery of heat changed the amorphous and disordered titania structure into a crystalline form.

In then applying anodization in a second instance, the researchers were able to convert part of the produced layer back to an amorphous state. They then gradually dissolved the amorphous portion to free the film from the template, without changing the template’s shape. Because disordered and crystalline titania dissolve differently, the team was able to use acid to selectively dissolve the layer that remained in contact with the template. The remaining free titania layer possessed the same through-hole pattern present at the beginning of the process.

Lumibird - You Have a Project 1-25 MR

Researchers have developed methods for creating porous titania films in laboratory settings, by patterning holes tens of nanometers in width onto thin layers of titania situated in ordered arrays. Though effective, the process does not enable scientists to build the films at scale, necessary to their application in photonics technology.

The team led by Takashi Yanagishita and Hideki Masuda previously introduced a “stamping” method for patterning on titanium metal before using anodization to grow a layer of titania. Holes formed the same pattern as those made artificially on the metal, though the individual stamps dissipated quickly due to the hardness of the titanium.

The new method avoids stamping altogether, instead relying on the delivery of heat.

The template pattern on the metal also remained intact, meaning that the template can be reused after removal of the film. The researchers also tested with different spacings, decreasing physical separation to 100 nm.

The researchers said that the scalability and high throughput of their protocol could expedite the speed with which the advance supports commercial production. They said they are optimistic the method will work with a wide range of additional nanostructured materials, with varying functions.

The work was supported by the Light Metal Educational Foundation and a grant from the Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Scientific Research Program (KAKHENI).

The research was published in RSC Advances (www.doi.org/10.1039/D0RA07650C).

Published: January 2021
Glossary
thin film
A thin layer of a substance deposited on an insulating base in a vacuum by a microelectronic process. Thin films are most commonly used for antireflection, achromatic beamsplitters, color filters, narrow passband filters, semitransparent mirrors, heat control filters, high reflectivity mirrors, polarizers and reflection filters.
photonic crystals
Photonic crystals are artificial structures or materials designed to manipulate and control the flow of light in a manner analogous to how semiconductors control the flow of electrons. Photonic crystals are often engineered to have periodic variations in their refractive index, leading to bandgaps that prevent certain wavelengths of light from propagating through the material. These bandgaps are similar in principle to electronic bandgaps in semiconductors. Here are some key points about...
industrialproductionfilmfilm coaterthin filmtitaniametal coatingmetal coatingsAsia-Pacifictitanium oxidemanufacturingUVphotonic crystalsResearch & TechnologyeducationCoatingscoatings aerospacearraysnanostructuresMaterialsmaterials coatingsTech Pulse

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.