Search
Menu
LightPath Technologies -  Germanium Alternative1-25 LB

Electrons 'Self-Trap' on Crystal Surfaces

Facebook X LinkedIn Email
For years, scientists have sought answers to questions about the microscopic properties of solid surfaces and interfaces. The end of that search may be a little closer, in light of a paper recently published by a team of researchers from the University of California at Berkeley.
The team discovered that when a probe laser pulse strikes a thin molecular film of ordered alkane adsorbed on a silver surface, a strange reaction occurs: The electrons localize -- or "self-trap" -- for a few femto-
seconds. Self-trapping causes a change in the reflection angles.
This discovery could have far-reaching results such as enabling researchers to better understand the dynamics of excess electrons in liquids and the electron transfer reactions in large molecules, including photosynthetic reaction centers.
Hamamatsu Corp. - Creating a Better Future MR 1-25

Published: March 1998
Research & TechnologyTech Pulse

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.