Search
Menu
Meadowlark Optics - Wave Plates 6/24 LB 2024

Electronic Metamaterial Made

Facebook X LinkedIn Email
BASEL, Switzerland, July 17, 2009 -- Physicists and chemists in Switzerland have defied the belief that electrical resistance of a material can't be adjusted by developing thin films with controllable electronic properties. The discovery, they say, could have a big impact on future applications in sensors and computing.

StohrandMatena.jpg
Dr. Meike Stöhr and Manfred Matena work at the ultrahigh vacuum system. (Photo: University of Basel)

Dr. Meike Stöhr and her collaborators at the universities of Basel and Heidelberg and the Paul Scherrer Institute developed a substance which, after heating on a copper surface, exhibits a two-dimensional network with nanometer-sized pores. The interaction of this network with the existing electron gas on the metal surface leads the electrons underneath the network to be pushed into the pores, forming small bunches of electrons called quantum dots.

The researchers found that varying parameters such as the height and diameter of the pores allowed them to selectively tune the properties of the material. By filling the pores with different molecules they get direct access to the material's properties that are dependent on the electronic structure, such as conductivity, reflectivity and surface catalysis. Having access to these properties could lead to the development of new materials with adjustable electronic properties.

The underlying physical mechanisms can best be understood by a comparison of the electron-gas with waves in water. Waves on a water surface are reflected by any obstacle they meet. If the obstacle on the surface resembles a honeycomb structure, standing waves are set up in each cell of the honeycomb. This then leads to a wave pattern that mimics the honeycomb structure.

Hamamatsu Corp. - Creating a Better Future MR 1-25

ElectronicMetamaterial.jpg
A two-dimensional “electronic metamaterial” is generated by supramolecular self-assembly on a metal surface. The periodic influence of the porous molecular network on the otherwise free-electron-like surface state results in the formation of an electronic band.

“Applying this analogy to the electron gas, we see that the interaction of the network structure with the electron gas on the metal surface confines the electrons giving rise to a characteristic electron wave structure of the new material,” said Stöhr.

These pore networks are good candidates for new metamaterials, which are man-made materials that have specific optical and electronic properties not found in nature. These properties can be tuned by changing the properties of their component materials. In the case of pore networks, it is the electronic surface properties which can be tuned by careful selection of the nanopores.

A paper on the research, "Band Formation from Coupled Quantum Dots Formed by a Nanoporous Network on a Copper Surface," appears in the July 16 edition of the journal Science.

The University of Basel and the Paul Scherrer Institute (PSI) are long-term partners of the Swiss Nanoscience Institute (SNI), which is financed by the Canton of Aargau. A key partner in this project was the Swiss Light Source of PSI.

For more information, visit: http://www.psi.ch/




Published: July 2009
Glossary
electronics
That branch of science involved in the study and utilization of the motion, emissions and behaviors of currents of electrical energy flowing through gases, vacuums, semiconductors and conductors, not to be confused with electrics, which deals primarily with the conduction of large currents of electricity through metals.
metamaterial
Metamaterials are artificial materials engineered to have properties not found in naturally occurring substances. These materials are designed to manipulate electromagnetic waves in ways that are not possible with conventional materials. Metamaterials typically consist of structures or elements that are smaller than the wavelength of the waves they interact with. Key characteristics of metamaterials include: Negative refraction index: One of the most notable features of certain...
nano
An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
photonics
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
quantum dots
A quantum dot is a nanoscale semiconductor structure, typically composed of materials like cadmium selenide or indium arsenide, that exhibits unique quantum mechanical properties. These properties arise from the confinement of electrons within the dot, leading to discrete energy levels, or "quantization" of energy, similar to the behavior of individual atoms or molecules. Quantum dots have a size on the order of a few nanometers and can emit or absorb photons (light) with precise wavelengths,...
surface
1. In optics, one of the exterior faces of an optical element. 2. The process of grinding or generating the face of an optical element.
thin film
A thin layer of a substance deposited on an insulating base in a vacuum by a microelectronic process. Thin films are most commonly used for antireflection, achromatic beamsplitters, color filters, narrow passband filters, semitransparent mirrors, heat control filters, high reflectivity mirrors, polarizers and reflection filters.
computingconductivitycontrollableelectrical resistanceelectronic metamaterialelectronic structureelectronicsImagingMeike StohrmetamaterialnanonanoporousNews & FeaturesPaul Scherrer InstitutephotonicsPSIquantum dotsResearch & TechnologySensors & DetectorsSNIsurfacesurface propertiesSwiss Light SourceSwiss Nanoscience Institutethin filmUniversity of Baselwave structure

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.