LONG BEACH, Calif., May 22 -- Using a special semiconductor holographic film, researchers at Purdue University have created the world's first real-time holographic fly-through of living tissue using infrared light. Purdue researchers Ping Yu and David Nolte and their colleagues viewed a living in-vitro rat tumor with a visual fly-through of the tumor created in real time. Nolte described the process at a press conference Tuesday at CLEO/QELS 2002. The key to the process, called optical coherence imaging (OCI), is the semiconductor holographic film developed by the Purdue team. Rather than recording a static image, the image on this film is adaptive -- changing in real time to remove the diffusely scattered light that ordinarily makes it impossible to see inside tissue. Researchers say this process could advance our understanding of living tumors - as current microscopy techniques to study tumors are destructive, requiring boiling and slicing. Ultimately researchers believe OCI could lead to new advances in diagnostic imaging, Nolte said.