Search
Menu
Excelitas PCO GmbH - PCO.Edge 11-24 BIO LB

Doctors Could Soon Use Light Therapy to Eradicate MRSA

Facebook X LinkedIn Email
MANON MIRABELLI, NEWS EDITOR [email protected]

WEST LAFAYETTE, Ind., April 9, 2019 — A treatment using blue light to eradicate MRSA could be in doctors’ hands in as little as two years.

The bacteria, researchers found, produces pigments that are susceptible to blue light, and the light can be used to photobleach the organism’s activity in the body.

“We found that this superbug produces pigments,” said Mohamed Seleem, a professor of microbiology at Purdue University’s College of Veterinary Medicine. “These pigments are associated with MRSA’s ability to damage the host, and if you know how to reduce the pigment, then, you might be able to reduce the organism’s activity in the body. This practice is known as photobleaching. When you bleach something in the wash machine, you’re extracting the color using chemicals. What we’re doing here is similar, but we’re using blue light to remove the pigments from MRSA so they can be easily killed.”

Courtesy of Pexels
LED photo courtesy of Pexels.

Exposing the bacteria to blue light can render it defenseless against antiseptics as mild as hydrogen peroxide. The discovery was purely accidental, revealing itself when the research team made the unexpected finding that MRSA pigments can be photobleached at 460 nm. 

“This new tool can treat any superficial wound infected with MRSA, which are typically very difficult to treat,” Seleem said. 

The light used to treat MRSA, Seleem said, must be blue because it needs to be a certain wavelength (460 nm) that falls in the blue light range and not is toxic to the human body. The researchers built a portable device composed of a blue LED with a central emission wavelength at 460 nm for clinical application.

Seleem explained that methicillin-resistant Staphylococcus aureus (MRSA), a bacterium that causes infection in various parts of the body, is resistant to many common antibiotics. While most MRSA infections are not serious, some can be life-threatening and sometimes result in amputation of the infected appendage.

Excelitas Technologies Corp. - X-Cite Vitae  MR 11/24

“Here, we report an approach to treat MRSA through photolysis of staphyloxanthin, an antioxidant residing in the microdomain of S. aureus membrane,” he said. “This photochemistry process is uncovered through transient absorption imaging and quantitated by absorption spectroscopy, Raman spectroscopy, and mass spectrometry.”

Photolysis of staphyloxanthin, Seleem added, transiently elevates the membrane permeability and renders MRSA highly susceptible to hydrogen peroxide attack. Consequently, staphyloxanthin photolysis by low-level 460 nm light eradicates MRSA synergistically with hydrogen peroxide and other reactive oxygen species.

After achieving promising results in vitro, researchers exposed mice with MRSA-infected wounds to different wavelengths of light. The infections responded especially well to light in the blue region, and combined with a low-concentration hydrogen peroxide reduced significantly.

“The effectiveness of this synergistic therapy is well validated in MRSA planktonic culture, MRSA-infected macrophage cells, stationary-phase MRSA, persisters, S. aureus biofilms, and two mice wound infection models,” he said. “Collectively, our work demonstrates staphyloxanthin photolysis as a new therapeutic platform to treat MRSA infections.”

With the success of the experiments on mice, the next step is to conduct clinical trials on humans, after which it may be ready for practical use in as little as two years.

The technology is patented through Purdue’s Office of Technology Commercialization. Ji-Xin Cheng, a professor of biomedical engineering at Boston University, is working to arrange clinical trials. The new study was published in Advanced Science (https://doi.org/10.1002/advs.201900030).

Published: April 2019
Glossary
absorption spectroscopy
Absorption spectroscopy is a fundamental analytical technique used to study the interaction between electromagnetic radiation and matter. It involves measuring the absorption of light by a sample across a range of wavelengths or frequencies. This absorption is caused by the sample's ability to absorb certain wavelengths of light, which corresponds to the excitation of electrons or molecules to higher energy levels. Principle of absorption: Absorption occurs when the energy of incident...
raman spectroscopy
Raman spectroscopy is a technique used in analytical chemistry and physics to study vibrational, rotational, and other low-frequency modes in a system. Named after the Indian physicist Sir C.V. Raman who discovered the phenomenon in 1928, Raman spectroscopy provides information about molecular vibrations by measuring the inelastic scattering of monochromatic light. Here is a breakdown of the process: Incident light: A monochromatic (single wavelength) light, usually from a laser, is...
Research & TechnologyAmericasblue lightphotobleachMRSAabsorption spectroscopyRaman spectroscopymass spectroscopymedicalBiophotonicsLight Sourcesspectroscopy

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.