Search
Menu
PI Physik Instrumente - Space Qualified Steering LB LW 12/24

DARPA Renews Symmetricom Atomic Clock Program Funds

Facebook X LinkedIn Email
SAN JOSE, Calif., Aug. 23 -- Symmetricom Inc., a maker of timing, frequency and synchronization products such as atomic clocks and network time servers, announced today it was awarded phase three funding for the Defense Advanced Research Projects Agency (DARPA) Chip Scale Atomic Clock (CSAC) program, for the production of miniature, low-lower atomic clocks for precision timing applications in handheld battery-powered instrumentation for use by military personnel.
Under the award, valued at $3.4 million, Symmetricom will develop miniature low-power atomic clocks based on its coherent population trapping (CPT) atomic interrogation technology and microelectromechanical systems (MEMS) fabrication techniques.
Symmetricom is working with the Charles Stark Draper Laboratory in Cambridge, Mass., and Sandia National Laboratories in Albuquerque, N.M., on CSAC development.
Atomic clocks are more accurate, stable and precise than quartz-based technologies, but they are larger and consume more power -- by a hundred-fold -- than quartz-based clocks. Existing miniature atomic clocks occupy a volume similar to a deck of playing cards and consume power comparable to a notebook computer. In phase two of the DARPA CSAC program, Symmetricom demonstrated a miniature atomic clock that was ten times smaller and lower in power than existing technology. In phase three, Symmetricom said, it will reduce the size and power an additional tenfold -- comparable to low-power quartz clocks -- while improving accuracy and stability by a factor of 10 to 100.
Symmetricom said the use of miniature, low-power precision timing references such as CSAC will enable a new generation of portable instrumentation for positioning, navigation and communications, and that ultrastable frequency references will dramatically improve the bandwidth and reliability of secure military communications. In military global position system receivers, stable time sources will enable robust acquisition and position determination in a jammed environment, the company said.

For more information, visit: www.atomic-clock.symmttm.com

CMC Electronics - Advanced Near-Infrared 2024 MR

Published: August 2005
atomic clocksBasic ScienceChip Scale Atomic ClockCommunicationsCSAC90 nm wafersDARPAdefenseDefense Advanced Research Projects AgencyNews & FeaturesSymmetricom

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.