Search
Menu
Excelitas PCO GmbH - PCO.Edge 11-24 BIO LB

Communities of Microbes Found to Have Working Memory

Facebook X LinkedIn Email
Biologists at the University of California, San Diego, studying collectives of bacteria, or “biofilms,” have discovered that these so-called simple organisms feature a robust capacity for memory. The findings were reported in the journal Cell Systems.

The researchers used light exposure to impress a complex pattern onto a biofilm community — made up of hundreds of individual bacteria — that remembered the initial light stimulus, similar to how neurons form memory.

Working in the laboratory of UC San Diego, professors Gürol Süel, Chih-Yu Yang, Maja Bialecka-Fornal, and their colleagues found that bacterial cells stimulated with light remembered the exposure hours after the initial stimulus. The researchers were able to manipulate the process so that memory patterns emerged. The discovery reveals surprising parallels between low-level single-cell organisms and sophisticated neurons that process memory in the human brain.

“Even just a few years ago people didn’t think bacterial cells and neurons were anything alike because they are such different cells,” Süel said. “This finding in bacteria provides clues and a chance to understand some key features of the brain in a simpler system. If we understand how something as sophisticated as a neuron came to be — its ancient roots — we have a better chance of understanding how and why it works a certain way.”

Following recent discoveries by the Süel lab that bacteria use ion channels to communicate with each other, new research suggested that bacteria might also have the ability to store information about their past states. In the new study, the researchers were able to encode complex memory patterns in bacterial biofilms with light-induced changes in the cell membrane potential of Bacillus subtilis bacteria. The optical imprints, they found, lasted for hours after the initial stimulus, leading to a direct, controllable single-cell resolution depiction of memory.

Hamamatsu Corp. - Mid-Infrared LED 11/24 MR

“When we perturbed these bacteria with light they remembered and responded differently from that point on,” Süel said. “So for the first time we can directly visualize which cells have the memory. That’s something we can’t visualize in the human brain.”

The researchers said that the ability to encode memory in bacterial communities could enable future biological computation through the imprinting of complex spatial memory patterns in biofilms.

“Bacteria are the dominant form of life on this planet,” Süel said. “Being able to write memory into a bacterial system and do it in a complex way is one of the first requirements for being able to do computations using bacterial communities.”

The researchers are hoping their findings will provide a starting path to one day design basic computing systems with living organisms such as bacteria. They also say it may be possible to imprint synthetic circuits in bacterial biofilms, by activating different types of computations in separate areas of the biofilm.

“Overall, our work is likely to inspire new membrane-potential-based approaches in synthetic biology and provide a bacterial paradigm for memory-capable biological systems,” Süel said.

Published: April 2020
Research & TechnologyCaliforniaUC San DiegobacteriaBiofilmsmemorybrain activityneuronsBioScan

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.