Search
Menu
Sheetak -  Cooling at your Fingertip 11/24 LB

Cloak has Tapered Waveguide

Facebook X LinkedIn Email
WEST LAFAYETTE, Ind., May 20, 2009 -- Using a specially tapered optical waveguide instead of exotic metamaterials that require complex nanofabrication, researchers have created a simplified invisibility cloak that, unlike previous ones, works for all colors of the visible spectrum. The work makes possible the cloaking of objects larger than ever before and could lead to practical applications in the new field of transformation optics.

The Purdue University research team used a tapered waveguide to cloak an area 100 times larger than the wavelengths of light shined by a laser into the device, an achievement they said was unprecedented. Previous experiments with metamaterials have been limited to cloaking regions only a few times larger than the wavelengths of visible light.

Because the new method enabled the researchers to dramatically increase the cloaked area, the technology offers hope of cloaking larger objects, said Vladimir Shalaev, Purdue University's Robert and Anne Burnett Professor of Electrical and Computer Engineering.

BroadbandCloak.jpg
The design of a new type of invisibility cloak is simpler than previous designs and works for all colors of the visible spectrum, making it possible to cloak larger objects than before and possibly leading to practical applications in transformation optics. (Image: Purdue University)

"All previous attempts at optical cloaking have involved very complicated nanofabrication of metamaterials containing many elements, which makes it very difficult to cloak large objects," Shalaev said. "Here, we showed that if a waveguide is tapered properly it acts like a sophisticated nanostructured material."

The waveguide is inherently broadband, meaning it could be used to cloak the full range of the visible light spectrum. Unlike metamaterials, which contain many light-absorbing metal components, only a small portion of the new design contains metal.

Theoretical work for the design was led by Purdue, with BAE Systems leading work to fabricate the device, which is formed by two gold-coated surfaces, one a curved lens and the other a flat sheet. The researchers cloaked an object about 50 µm in diameter, or roughly the width of a human hair, in the center of the waveguide.

"Instead of being reflected as normally would happen, the light flows around the object and shows up on the other side, like water flowing around a stone," Shalaev said.

Lumibird - You Have a Project 1-25 MR

The research falls within a new field called transformation optics, which may usher in a host of radical advances, including cloaking; powerful "hyperlenses" resulting in microscopes 10 times more powerful than today's and able to see objects as small as DNA; computers and consumer electronics that use light instead of electronic signals to process information; advanced sensors; and more efficient solar collectors.

Unlike natural materials, metamaterials are able to reduce the "index of refraction" to less than one or less than zero. Refraction occurs as electromagnetic waves, including light, bend when passing from one material into another. It causes the bent-stick-in-water effect, which occurs when a stick placed in a glass of water appears bent when viewed from the outside. Each material has its own refraction index, which describes how much light will bend in that particular material and defines how much the speed of light slows down while passing through a material.

Natural materials typically have refractive indices greater than one. Metamaterials, however, can be designed to make the index of refraction vary from zero to one, which is needed for cloaking.

The precisely tapered shape of the new waveguide alters the refractive index in the same way as metamaterials, gradually increasing the index from zero to 1 along the curved surface of the lens, Shalaev said.

Previous cloaking devices have been able to cloak only a single frequency of light, meaning many nested devices would be needed to render an object invisible.

Alexander Kildishev, a principal research scientist at Purdue's Birck Nanotechnology Center, reasoned that the same nesting effect might be mimicked with the waveguide design. Subsequent experiments and theoretical modeling proved the concept correct.

Researchers do not know of any fundamental limit to the size of objects that could be cloaked, but additional work will be needed to further develop the technique.

Recent cloaking findings reported by researchers at other institutions have concentrated on a technique that camouflages features against a background. This work, which uses metamaterials, is akin to rendering bumps on a carpet invisible by allowing them to blend in with the carpet, whereas the Purdue-based work concentrates on enabling light to flow around an object.

Findings are detailed in a research paper appearing May 29 in the journal Physical Review Letters. In addition to Shalaev and Kildishev, the paper was written by Igor I. Smolyaninov, a principal electronic engineer at BAE Systems in Washington, DC, and Vera N. Smolyaninova, an assistant professor of physics at Towson University in Maryland.

For more information, visit: http://www.purdue.edu/


Published: May 2009
Glossary
invisibility cloak
An invisibility cloak is technology that would render an object or individual invisible to the observer. In scientific research, efforts to create real-life invisibility cloaks have been explored using principles of optics and metamaterials. Metamaterials are artificially engineered materials with properties not found in naturally occurring materials. By manipulating the interaction of light with metamaterials, it is theoretically possible to bend or redirect light around an object,...
light
Electromagnetic radiation detectable by the eye, ranging in wavelength from about 400 to 750 nm. In photonic applications light can be considered to cover the nonvisible portion of the spectrum which includes the ultraviolet and the infrared.
nano
An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
photonics
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
refraction
The bending of oblique incident rays as they pass from a medium having one refractive index into a medium with a different refractive index.
spectrum
See optical spectrum; visible spectrum.
visible
That term pertaining to the spectral region that can be perceived by the eye.
waveguide
A waveguide is a physical structure or device that is designed to confine and guide electromagnetic waves, such as radio waves, microwaves, or light waves. It is commonly used in communication systems, radar systems, and other applications where the controlled transmission of electromagnetic waves is crucial. The basic function of a waveguide is to provide a path for the propagation of electromagnetic waves while minimizing the loss of energy. Waveguides come in various shapes and sizes, and...
BAE SystemsBasic ScienceBiophotonicsBirck Nanotechnology CentercamouflagecloakingcomputersDNAelectromagneticenergyfiber opticsgreen photonicshyperlensesinvisibilityinvisibility cloakinvisibleKildishevlenseslightmetamaterialsMicroscopynanonanofabricationnanostructuredNews & FeaturesOpticsphotonicsPurduerefractionResearch & TechnologySensors & DetectorsShalaevsolarspectrumtaperedtransformation opticsvisibleWaveguideLasers

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.