Search
Menu
Excelitas PCO GmbH - PCO.Edge 11-24 BIO LB

Camera vs. Eye: Why the Eyes Have It

Facebook X LinkedIn Email
BERKELEY, Calif., May 5, 2011 — The human eye long ago solved a problem common to both digital and film cameras: how to get good contrast in an image while capturing faint detail. Physiologists described the retina’s tricks for improving contrast and sharpening edges decades ago, but new experiments have shown how the eye achieves this without sacrificing shadow detail.

“One of the big success stories, and the first example of information processing by the nervous system, was the discovery that the nerve cells in the eye inhibit their neighbors, which allows the eye to accentuate edges,” said Richard Kramer of the University of California, Berkeley. “This is great if you only care about edges. But we also want to know about the insides of objects, especially in dim light.”

Kramer and former graduate student Skyler L. Jackman, now a postdoctoral fellow at Harvard University, discovered that while light-sensitive nerve cells in the retina inhibit dozens of their close neighbors, they also boost the response of the nearest one or two nerve cells. That extra boost preserves the information in individual light-detecting cells — the rods and cones — thereby retaining faint detail while accentuating edges, Kramer said. The rods and cones thus get both positive and negative feedback from their neighbors.

“By locally offsetting negative feedback, positive feedback boosts the photoreceptor signal while preserving contrast enhancement,” he said.

From horseshoe crabs to humans
The fact that retinal cells inhibit their neighbors, an activity known as “lateral inhibition,” was first observed in horseshoe crabs by H. Keffer Hartline, who earned a share of the 1967 Nobel Prize in physiology or medicine for the discovery. This form of negative feedback was later shown to take place in the vertebrate eye, including the human eye, and has since been found in many sensory systems as a way, for example, to sharpen the discrimination of pitch or touch.


Cones normally release the neurotransmitter glutamate in the dark, while light decreases glutamate release. This graph of neurotransmitter release shows what happens when cone cells are exposed to a dark spot in a light background (top) under various scenarios, including no feedback (green trace) and only negative feedback from horizontal cells (red trace). Negative feedback to many cones enhances edges, but it would decrease detail in dark areas were it not for newly discovered positive feedback that is localized to only a few cone cells (blue trace). (Image: Richard Kramer lab, University of California, Berkeley)

Lateral inhibition fails, however, to account for the eye’s ability to detect faint detail near edges, including the small, faint spots that ought to be invisible if their detection is inhibited by encircling retinal cells.

Kramer noted that the details of lateral inhibition are still a mystery half a century after Hartline's discovery. Neurobiologists still debate whether the negative feedback involves an electrical signal, a chemical neurotransmitter, or protons that change the acidity around the cell.

Meadowlark Optics - Wave Plates 6/24 MR 2024

"The field is at an impasse," Kramer said. "And we were surprised to find this fundamental new phenomenon, despite the fact that the anatomy of the retina has been known for more than 40 years."

The retina in vertebrates is lined with a sheet of photoreceptor cells: cones for day vision and rods for night vision. The lens of the eye focuses images onto this sheet, and like the pixels in a digital camera, each photoreceptor generates an electrical response proportional to the intensity of the light falling on it. The signal releases glutamate, a chemical neurotransmitter that affects neurons downstream, ultimately reaching the brain.

Unlike the pixels of a digital camera, however, photoreceptors affect the photoreceptors around them through so-called horizontal cells, which underlie and touch as many as 100 individual photoreceptors. The horizontal cells integrate signals from all these photoreceptors and provide broad inhibitory feedback. This feedback is thought to underlie lateral inhibition, a process that sharpens our perception of contrast and color, Kramer said.

The new study shows that the horizontal cells also send positive feedback to the photoreceptors that have detected light, and perhaps to one or two neighboring photoreceptors.

“Positive feedback is local, whereas negative feedback extends laterally, enhancing contrast between center and surround,” Kramer said.

Electrical vs. chemical signals
The two types of feedback work by different mechanisms, the researchers found. The horizontal cells undergo an electrical change when they receive neurotransmitter signals from the photoreceptors, and this voltage change quickly propagates throughout the cell, affecting dozens of nearby photoreceptors to lower their release of the glutamate neurotransmitter.

The positive feedback, however, involves chemical signaling. When a horizontal cell receives glutamate from a photoreceptor, calcium ions flow into the horizontal cell. These ions trigger the horizontal cell to “talk back” to the photoreceptor, Kramer said. Because calcium doesn't spread very far within the horizontal cell, the positive feedback signal stays local, affecting only one or two nearby photoreceptors.

The discovery of a new and unsuspected feedback mechanism in an organ that is very well studied is probably related to how the eye is studied, Kramer said. Electrodes are typically stuck into the retina to both change the voltage in cells and record changes in voltage. Because the new signal is chemical, not electrical, it would have been easily missed.

Jackman and Kramer found the same positive feedback in the cones of a zebrafish, lizard, salamander, anole (whose retina contains only cones) and rabbit, proving that “this is not just some weird thing that happens in lizards; it seems to be true across all vertebrates and presumably humans,” Kramer said.

For more information, visit: www.berkeley.edu  

Published: May 2011
Glossary
image contrast
Also referred to as image visibility, the contrast of an image is the variation in the intensity of an image formed by an optical system, where the image pixels are defined on a gray scale scheme of black being the dimmest and white being the brightest intensity values. Image contrast is then quantified by the expression: (I_max - I_min) / (I_max + I_min), where I_max and I_min are the maximum and minimum points of intensity in the image.
retina
The retina is a light-sensitive tissue layer located at the back of the eye, opposite the lens. It plays a crucial role in the process of vision by converting light into neural signals that are sent to the brain for visual recognition. Layers: The retina is composed of several layers of specialized cells, each with distinct functions: Photoreceptor layer: Contains two types of photoreceptor cells — rods and cones — that convert light into electrical signals. Bipolar...
AmericasBiophotonicscalcium ionscameraschemical neurotransmittersglutamateH. Keffer Hartlineimage contrastImaginglateral inhibitionnegative feedbacknerve cellsneurobiologyphotoreceptorspositive feedbackResearch & TechnologyretinaRichard KramerSensors & DetectorsSkyler L. JackmanUniversity of California Berkeley

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.