Researchers this week began work on the CRIMSON project, an effort to develop advanced laser-based coherent Raman scattering microscopy. The transdisciplinary, transnational project aims to develop and introduce a tool capable of creating three-dimensional quantitative maps of subcellular compartments in living cells and organoids. The device will also enable fast-tissue classification with unprecedented biomolecular sensitivity. The CRIMSON project aims to develop a laser-based coherent Raman scattering microscope. Courtesy of Politecnico di Milano. Pairing lasing techniques with artificial intelligence data analysis (with high acquisition speed) will allow device users to observe intra- and intercellular dynamic changes through time-lapse imaging. The project has a budget of €5 million; the European Union’s Horizon 2020 research and innovation program provided funding for the project, which is slated to span 42 months. Three research centers (Politenico di Milano, Leibniz Institute of Photonic Technology, and Centre National de la Recherche Scientifique) will develop the technology. Three biomedical partners (Istituto Nazionale Tumori, Institut National de la Santé et de la Recherche Médicale, and Jena University Hospital) will validate the system on open biological questions related to cancer, as paradigmatic examples of the complexity and heterogeneity of cellular diseases.