Search
Menu
Bristol Instruments, Inc. - 872 Series LWM 10/24 LB

AFRL Trials Beam Director for Directed Energy System

Facebook X LinkedIn Email
Results from a flight-test campaign for a beam director concept that can be used with directed energy laser systems integrated onto aircraft indicated favorable results for an Air Force Research Laboratory (AFRL) program. According to the AFRL, tests showed the efficacy of various aerodynamic flow control techniques in mitigating optical and mechanical distortions imparted onto a laser beam leaving an airborne platform traveling at high speeds.

The AFRL’s Hybrid Aero-Effect Reducing Design with Realistic Optical Components (HARDROC) team, with prime contractor MZA Associates, developed and tested the low-power, subscale beam director. Advanced flow-control techniques were at the heart of the HARDROC program, and tying the aerodynamic modifications to realistic optical components was crucial to demonstrating overall system effectiveness.

According to Rudy Johnson, HARDROC program manager, these sensitive optical components are required for an advanced directed energy system.

The program, Johnson said, emphatically determined that the effective flow-control techniques could be used with the necessary optical components.

The flow-control at the heart of HARDROC has been in development for several years by researchers at AFRL. 
According to Scott Sherer, Computational Fluid Dynamics (CFD) lead for the HARDROC program, the test team used advanced CFD simulation techniques to demonstrate which flow-control techniques could work and were worth pursuing, and which techniques were not. A test aircraft carries the sub-scale HARDROC beam director illuminated by a low-power scoring laser during an experimentation flight August 12, 2022. The HARDROC program evaluated in flight the ability of various aerodynamic flow control techniques to mitigate optical and mechanical distortions imparted on a laser beam leaving an airborne platform travelling at high speeds. Courtesy of AFRL.
A test aircraft carries the subscale HARDROC beam director illuminated by a low-power scoring laser during an experimentation flight last year. The HARDROC program evaluated in flight the ability of various aerodynamic flow-control techniques to mitigate optical and mechanical distortions imparted on a laser beam leaving an airborne platform traveling at high speeds. Courtesy of AFRL.
AFRL contracted with MZA Associates to design the subscale system that could be either used in a wind tunnel or on an aircraft. The design was ground-tested in an environmental chamber as well as a wind tunnel to ensure functionality and performance under load before culminating in flight testing on a business jet last year. During these flight tests, the aircraft cruised at high speed, and a variety of sensors were used to measure aerodynamic disturbances.

PI Physik Instrumente - Space Qualified Steering MR LW 12/24

The data ultimately demonstrated that the HARDROC beam director enlarges the envelope that airborne directed energy systems can operate in, providing a 360° field of regard across extended speed regimes with reduced size, weight, and power (SWAP) compared to other state-of-the-art turrets.

Mike Stanek, technical adviser for the Aerospace Systems Directorate’s Integrated Systems Branch, said the successful flight demonstration of the HARDROC turret clears one key remaining technological hurdle for the operation of high-energy lasers on high-speed aircraft, which could support a variety of Air Force missions.

“Integration of the low-SWAP HARDROC turret would allow less laser power to be lost to aero-effects, thus enabling mission performance compared to other types of integration strategies,” Stanek said.

The data collected from tests will now support forthcoming airborne beam director development efforts, said Matthew Kemnetz, co-principal investigator for aero-effects and beam control in AFRL’s Directed Energy Directorate at Kirtland Air Force Base.

Published: June 2023
Glossary
directed energy
Directed energy refers to a type of energy that is emitted and transferred in a controlled direction. The term is often associated with military and technological applications where energy, typically in the form of electromagnetic radiation, is focused and directed toward a specific target. Directed energy systems can take various forms, including lasers and high-power microwaves. The key characteristic is the intentional concentration of energy to achieve a desired effect on a target. In...
Directed EnergyLasersAmericasaerospace & defensemilitarymilitary & defenseAFRLfluid dynamicsBusinessflow controlcomputational fluid dynamicsHigh Energy LasersIndustry News

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.