Search
Menu
Opto Diode Corp. - Opto Diode 10-24 LB

3D-Printing Technique Streamlines Multi-Materials Prototyping

Facebook X LinkedIn Email
A 3D printing and laser process developed at the University of Missouri opens the door to simplified manufacturing of multi-material, multi-layered sensors, circuit boards, and even textiles with electronic components. Called the Freeform Multi-material Assembly Process, the technique allows complex devices to be crafted from multiple materials — including plastics, metals, and semiconductors — using a single machine.

By printing sensors embedded within a structure, the machine can make objects capable of sensing environmental conditions like temperature and pressure. For example, researchers could create a natural-looking structure like a rock or a seashell that could help take field measurements.

At present, manufacturing a multi-layered structure like a printed circuit board can be costly and time-consuming, and can generate waste harmful to the environment. The method developed by the researchers is expected to reduce costs, time, and waste associated with prototyping new devices.
A 3D printing method developed by the University of Missouri could enable fast prototyping of complex devices using multiple materials, but only one machine. Courtesy of Sam O’Keefe/University of Missouri.
A 3D printing method developed by the University of Missouri could enable fast prototyping of complex devices using multiple materials, but only one machine. Courtesy of Sam O’Keefe/University of Missouri.

According to doctoral student Bujingda Zheng, the technique itself takes notes from nature. “For example, electrical eels have bones and muscles that enable them to move. They also have specialized cells that can discharge up to 500 volts to deter predators. These biological observations have inspired researchers to develop new methods for fabricating 3D structures with multi-functional applications, but other emerging methods have limitations.”

Sheetak -  Cooling at your Fingertip 11/24 MR

Specifically, other techniques fall short when it comes to how versatile the material can be and how precisely smaller components can be placed inside larger 3D structures.

The University of Missouri team’s method uses special techniques to solve these problems. Team members built a machine that has three different nozzles: one adds ink-like material, another uses a laser to carve shapes and materials, and the third adds additional functional materials to enhance the product's capabilities.

It starts by making a basic structure with regular 3D printing filament such as polycarbonate, a type of transparent thermoplastic. Then, it switches to laser to convert some parts into a special material called laser-induced graphene, putting it exactly where it is needed. Finally, more materials are added to enhance the functional abilities of the final product.

“This opens the possibility for entirely new markets,” said Jian Lin, an associate professor of mechanical and aerospace engineering. Lin expects far-reaching impacts for wearable sensors, customizable robots, and medical devices, among other areas.

Funded by the National Science Foundation (NSF)’s Advanced Manufacturing program, the researchers are exploring commercialization options with help from the NSF I-Corps program.

“Currently, we believe it would be of interest to other researchers, but we believe it will ultimately benefit businesses,” Lin said. “It will shorten fabrication time for device prototyping by allowing companies to make prototypes in house.”

The research was published in Nature Communications (www.doi.org/10.1038/s41467-024-48919-5).

Published: July 2024
Glossary
additive manufacturing
Additive manufacturing (AM), also known as 3D printing, is a manufacturing process that involves creating three-dimensional objects by adding material layer by layer. This is in contrast to traditional manufacturing methods, which often involve subtracting or forming materials to achieve the desired shape. In additive manufacturing, a digital model of the object is created using computer-aided design (CAD) software, and this digital model is then sliced into thin cross-sectional layers. The...
3d printing
3D printing, also known as additive manufacturing (AM), is a manufacturing process that builds three-dimensional objects layer by layer from a digital model. This technology allows the creation of complex and customized structures that would be challenging or impossible with traditional manufacturing methods. The process typically involves the following key steps: Digital design: A three-dimensional digital model of the object is created using computer-aided design (CAD) software. This...
electronics
That branch of science involved in the study and utilization of the motion, emissions and behaviors of currents of electrical energy flowing through gases, vacuums, semiconductors and conductors, not to be confused with electrics, which deals primarily with the conduction of large currents of electricity through metals.
Research & TechnologyLasersadditive manufacturingMaterialsprocessing3d printingelectronicssensorscircuit boardmultifunctionalmulti-materialscommercializationprototypingprototypemanufacturingUniversity of MissouriNature CommunicationsAmericasTechnology News

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.