Search
Menu
Admesy BV - Built to Perform 1-25 LB

Images of Atomic Spin Captured

Facebook X LinkedIn Email
ATHENS, Ohio, April 28, 2010 — While spintronics is being touted as the key to next generation computers and high-tech devices, no one has actually seen an atomic spin — until now. The spin, a quantum mechanical property of electrons, has been imaged for the first time by physicists at Ohio University and the University of Hamburg in Germany.


The different shape and appearance of these individual cobalt atoms is caused by the different spin directions. (Image: Saw-Wai Hla, Ohio University)

The researchers used a custom-built microscope with an iron-coated tip to manipulate cobalt atoms on a plate of manganese. Through scanning tunneling microscopy, the team repositioned individual cobalt atoms on a surface that changed the direction of the electrons' spin. Images captured by the scientists showed that the atoms appeared as a single protrusion if the spin direction was upward and as double protrusions with equal heights when the spin direction was downward.

The study suggests that scientists can observe and manipulate spin, a finding that may impact future development of nanoscale magnetic storage, quantum computers and spintronic devices.

"Different directions in spin can mean different states for data storage," said Saw-Wai Hla, an associate professor of physics and astronomy in Ohio University's Nanoscale and Quantum Phenomena Institute and one of the primary investigators on the study. "The memory devices of current computers involve tens of thousands of atoms. In the future, we may be able to use one atom and change the power of the computer by the thousands."

Meadowlark Optics - Wave Plates 6/24 MR 2024

Unlike electronic devices, which give off heat, spintronic-based devices are expected to experience less power dissipation.

The experiments were conducted in an ultrahigh vacuum at the low temperature of 10 Kelvin, with the use of liquid helium. Researchers will need to observe the phenomenon at room temperature before it can be used in computer hard drives.

But the new study suggests a path to that application, said study lead author Andre Kubetzka of the University of Hamburg. To image spin direction, the team not only used a new technique but also a manganese surface with a spin that, in turn, allowed the scientists to manipulate the spin of the cobalt atoms under study.

"The combination of atom manipulation and spin sensitivity gives a new perspective of constructing atomic-scale structures and investigating their magnetic properties," Kubetzka said.

The research, which was carried out at the University of Hamburg, was supported by the German Research Foundation and a Partnership for International Collaboration and Education (PIRE) grant from National Science Foundation.

The research is the result of a collaboration among three research teams: a spin-polarized scanning tunneling microscopy group of Professor Roland Wiesendanger led by Kubetzka at the University of Hamburg, Germany; Hla, an expert in atom manipulation at Ohio University; and two theorists, Professor Stefan Heinze and Paolo Ferriani, now at the Christian Albrechts University Kiel, in Germany.

For more information, visit:  www.ohio.edu 



Published: April 2010
Glossary
astronomy
The scientific observation of celestial radiation that has reached the vicinity of Earth, and the interpretation of these observations to determine the characteristics of the extraterrestrial bodies and phenomena that have emitted the radiation.
nano
An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
AmericasAndre Kubetzkaastronomyatom manipulationatomic spinBasic ScienceChristian-Albrechts-Universit?t Kielcobalt atomsEuropeGermanyliquid heliummanganeseMicroscopynanonanoscale magnetic storageNational Science FoundationOhioOhio UniversityPaolo Ferrianiquantum computersquantum mechanical property of electronsResearch & TechnologyRoland WiesendangerSaw-Wai Hlascanning tunneling microscopyspintronicsStefan HeinzeTest & Measurementultrahigh vacuumUniversity of Hamburg

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.
Photonics Spectra Hyperspectral Imaging Summit 2025LIVE NOW: Maximizing Output from Hyperspectral Data for Industrial Applications X