TAU Systems Collaborates with ELI Beamlines, UT Austin on Laser Wake Field Acceleration
TAU Systems, a producer of ultrafast, compact laser-plasma accelerators and secondary radiation sources, has entered into a research collaboration with the Extreme Light Infrastructure (ELI ERIC) and the University of Texas at Austin (UT Austin). The collaboration aims to perform a series of experiments based on laser wake field acceleration (LWFA) using the Texas Petawatt laser system, housed at UT Austin. The collaborators seek to generate multi-giga electron volt (multi-GeV) beams, supporting applications such as radiography and muon production.
A collaboration between TAU Systems, the UT Austin, and ELI-Beamlines seeks to leverage recently developed acceleration techniques to further develop laser-driven particle acceleration. Courtesy of TAU Systems.
The scientists will also make use of the “nanoparticle-assisted laser wake field acceleration” technique, which recently allowed researchers from TAU Systems and UT Austin as well as several U.S. national laboratories and European Universities to generate and accelerate electrons to record energy of 10 GeV over a distance as short as 10 cm.
Experiments at UT Austin will serve to test an upgrade at the Texas Petawatt Laser facility, under which the repetition rate of the system was increased three times, up to a shot every 20 minutes. Further experiments are foreseen using ELI’s Petawatt beamlines available in Czechia at the ELI-Beamlines facility.
The collaboration, which began in June, will take place over the course of one year and consist of several campaigns at the Texas Petawatt facility. The stakeholders anticipate that the collaboration will accelerate the path to democratized laser driven particle and radiation sources, from both electrons and neutrons to X-rays and Gamma rays. The development of these products aligned with innovative “pay-to-play” beam access at TAU Labs application centers, TAU Systems said, will accelerate research into areas such as radiation testing for space-bound electronics, higher resolution 3D materials imaging, battery development, biomolecules structure determination and engineering, material testing for nuclear fusion reactors, and nuclear waste reduction.
LATEST NEWS