Estimates suggest that DE-STAR 4 could destroy an asteroid 10 times the size of 2012 DA14 — an asteroid roughly half the size of a football field with energy equal to that of a large hydrogen bomb. DE-STAR 4 could deliver 1.4 megatons of energy per day to its target, Lubin said, obliterating an asteroid 500 m across in one year. Able to engage multiple targets and missions at once, DE-STAR 4 “is the baseline for asteroid mitigation and spacecraft propulsion," Lubin said in an email to Photonics.com. "It is not something that makes sense to build right now, though it shares the same basic technology as the smaller units. The scale-up has very significant technological hurdles, not the least of which is building something that large in orbit. This is for our children's generation to consider.
"One of the key issues is that efficiency of conversion — sunlight to electricity to laser light — is not the issue, as we are almost there already. We only assume very modest improvements in efficiency (it is close to 50 percent already, with advanced photonic devices on both sides, so you cannot improve efficiency very much. We do, however, assume massive improvements in power density of lasers (kw/kg). The best is currently about 0.2 kw/kg (e.g., DARPA Excalibur), and we assume in the next one to two decades an improvement of a factor of 50 here. This is purely for mass issues, not efficiency. Phase locking, phase stability, phase noise, etc., are real issues to be tackled.
"That is why we suggest a realistic program starts small: DE-STAR 0 that then leads to a DE-STAR 1, etc."
Larger still, DE-STAR 6 could function both as an orbiting power source and as a propulsion system, meaning that it might allow for interstellar travel.
“Our proposal assumes a combination of baseline technology — where we are today — and where we almost certainly will be in the future, without asking for any miracles,” Lubin said. “We’ve really tried to temper this with a realistic view of what we can do, and we approached it from that point of view. It does require very careful attention to a number of details, and it does require a will to do so, but it does not require a miracle.”
"This is meant to be science-fact-based, not science fiction," Lubin added.
“There are large asteroids and comets that cross the Earth’s orbit, and some very dangerous ones [are] going to hit the Earth eventually,” Hughes said. “Many have hit in the past, and many will hit in the future. We should feel compelled to do something about the risk. Realistic solutions need to be considered, and this is definitely one of those.”