Email
Menu News Products Video Webinars White Papers EDU

Spectroscopy Reveals Breast Tumors Early

WEST LAFAYETTE, Ind., March 7, 2012 — Mimicking living breast tissue through the new Raman-based imaging tool of vibrational spectral microscopy reveals subtle changes and can could help assess a woman’s breast cancer risk.

The imaging technique identifies and tracks certain molecules by measuring their vibration with a laser. It works at high speed to enable researchers to measure changes in real time in live tissue, said Ji-Xin Cheng, an associate professor of biomedical engineering and chemistry at Purdue University.

The researchers used a special “3-D culture” that mimics living mammary gland tissue to show that fatty acid found in some foods influences the early precancerous stage. Unlike conventional flat cell cultures, the 3-D cultures have the round shape of milk-producing glands and behave like real tissue, said Sophie Lelièvre, an associate professor of basic medical sciences.


Researchers used a new imaging technology and a special “3-D culture” that mimics living mammary gland tissue to reveal subtle changes in breast tissue. This method could potentially determine a woman’s risk of developing breast cancer and to study ways of preventing the disease. Unlike conventional cell cultures, the 3-D cultures have the round shape of milk-producing glands and behave like real tissue. (Purdue University image/Shuhua Yue)

“This extremely sensitive technique shows the harmful impact of a nutrient called arachidonic acid,” Lelièvre said. “This fatty acid has been previously proposed to increase breast cancer risk, but until now there was no biological evidence of what it could do to alter breast epithelial cells.”

Researchers are studying changes that take place in epithelial cells, which make up tissue and organs where 90 percent of cancers occur. These changes in the tissue are necessary for tumors to form, she explained.

“By mimicking the early stage conducive to tumors and using a new imaging tool, our goal is to be able to measure this change and then take steps to prevent it,” Lelièvre said.

By monitoring the same 3-D culture before and after exposure to certain risk factors, the new imaging technique allows researchers to detect subtle changes in single live cells, Cheng said.

“Now there is no good way to assess risk for breast cancer,” Lelièvre said. “Assessments are mainly based on family history and genetic changes, and this only accounts for a very small percentage of women who get breast cancer. We need technology to assess the risk better and then screen for protective factors that could be used on individual patients because not everybody will be responsive to the same factors.”

The researchers will continue to develop a hyperspectral imaging system capable of imaging not only a specific point in a culture, but also many locations to form a point-by-point map so that tissue polarity can be directly visualized.

The research, which appeared in the February issue of Biophysical Journal, is part of the International Breast Cancer and Nutrition project launched by Purdue in October 2010 to better understand the role nutrients and other environmental factors play in breast tissue alterations and cancer development.

For more information, visit: www.purdue.edu  


The ability to post comments on Photonics.com is one benefit of a FREE Photonics.com membership.

Please login or register, for FREE, to post comments:

Login Register
Dr Rose, May I ask which journal this paper was published. I am interested in your research paper. Is it possible to get a copy of the publication? Many Thanks for your reply Mohammed Patel
3/13/2012 11:10:16 AM
- MOHAMMED PATEL


Thanks for the question! Yes, it does use Raman scattering. Here's a little more info on the technique from the paper's abstract: "A Raman scattering-based platform was used for label-free determination of apical polarity in live breast glandular structures (acini) produced in three-dimensional cell culture. The coherent anti-Stokes Raman scattering signal permitted the visualization of the apical and basal surfaces of an acinus. Raman microspectroscopy subsequently revealed that polarized acini lipids were more ordered at the apical membranes compared to basal membranes, and that an inverse situation occurred in acini that lost apical polarity upon treatment with Ca2þ-chelator EGTA. This method overcame variation between different cultures by tracking the status of apical polarity longitudinally for the same acini. Therefore, the disruption of apical polarity by a dietary breast cancer risk factor, u6 fatty acid, could be observed with this method, even when the effect was too moderate to permit a conclusive assessment by the traditional immunostaining method."
3/9/2012 10:20:15 AM
- MROSE


Excellent article. Does it use Raman Technique at all? Dr. Mohammed I Patel R & D Life Science, FFEI Ltd.
3/9/2012 6:29:54 AM
- MOHAMMED PATEL





Facebook Twitter Google+ RSS Mobile Apps