Precision Positioning Aids Microscopes with Tracking Viral Progression
The rapid spread of COVID-19 and other diseases has shown that understanding viral infection is critical to the health of people around the world. In particular, understanding the dynamics of the earliest stages of infection is important for developing prevention strategies, while understanding replication and late-stage processes are important for developing medical, pharmaceutical, and public health interventions. Human virus particles are typically between 20 and 200 nm in diameter, and so their visibility is just beyond the diffraction limit of optical microscopy. Not only do they come in varying sizes, but they also appear in a range of shapes and form factors. For many reasons, it is preferable to study single particles rather than conducting ensemble measurements, and high-precision positioning can provide the high spatial resolution that is required for this type of single-particle experiment.
|
|
|
|
Hyperspectral Imaging Allows the Simultaneous Measurement of Fluorophores
Hyperspectral imagers provide an image that produces a detailed spectrum for every pixel, capturing very minute details in a sample. Typically, this technology has been used to measure the spectral reflectance of materials such as agricultural products or components of biological tissue. It has the capability to produce a color image with a far greater color resolution than conventional imaging methods. With spectral channels from the tens to low hundreds, objects or materials are far more distinguishable than those generated by standard color cameras or with a bandpass filter that is used to block unwanted frequencies of light.
|
|
|
|
Century-Old Effect Applied for Study of Embryonic Development
Researchers have applied line-scanning Brillouin microscopy (LSBM), a microscopy technique based on Brillouin scattering, to visualize the mechanical properties of living cells over space and time, and to provide fast 3D imaging with low phototoxicity. Researchers at the European Molecular Biology Laboratory developed the approach, and used it to noninvasively track the mechanical properties of developing embryos at high speed and resolution.
|
|
|
|