Register
Sign In
Suppliers
Products
Categories
Handbook
Dictionary
Careers
Resources
Photonics Spectra
BioPhotonics
Vision Spectra
Virtual Events & Summits
Educational Institutions
Add/Update Your Listing
Exhibitor Listing Portal
Become an Exhibitor
Buyers' Guide Print Edition
Marketplace Help
Subscribe
Advertise
Suppliers
Products
Categories
Handbook
Dictionary
Careers
Resources
Photonics Spectra
BioPhotonics
Vision Spectra
Virtual Events & Summits
Educational Institutions
Add/Update Your Listing
Exhibitor Listing Portal
Become an Exhibitor
Buyers' Guide Print Edition
Marketplace Help
Register
Sign In
Photonics Dictionary
ytterbium laser
A ytterbium laser is a type of solid-state laser that employs ytterbium ions (Yb
³+
) as the dopant in the gain medium. These lasers are known for their high efficiency, broad absorption and emission spectra, and robust performance. Ytterbium lasers find applications in various fields, including industry, medicine, and scientific research.
Gain medium:
Ytterbium-doped crystals or fibers:
The gain medium can be a crystal, such as ytterbium-doped yttrium aluminum garnet (Yb:YAG), or an optical fiber, such as ytterbium-doped silica fiber. The choice depends on the specific application requirements.
Operating principle:
Optical pumping:
Ytterbium lasers are typically pumped using laser diodes emitting light at wavelengths around 940 nm or 976 nm. The pump light excites the ytterbium ions to higher energy states.
Laser emission:
The excited ytterbium ions then undergo stimulated emission, producing laser light primarily in the range of 1030 nm to 1100 nm, with a common emission wavelength being 1064 nm. This light results from the transition of ytterbium ions from the excited state to the ground state.
Key characteristics:
High efficiency:
Ytterbium lasers exhibit high quantum efficiency because the energy difference between the pump photons and the laser photons is relatively small, minimizing energy loss as heat and maximizing the conversion of pump light into laser light.
Broad absorption and emission bands:
Ytterbium-doped gain media have broad absorption and emission spectra, allowing for flexible pump wavelengths and tunable laser output.
Low thermal load:
The small quantum defect (the difference in energy between absorbed and emitted photons) leads to lower thermal load, improving thermal management and stability.
Applications:
Materials processing:
Ytterbium lasers are widely used in industrial applications for cutting, welding, and engraving metals and other materials due to their high power and efficiency.
Medical procedures:
These lasers are employed in various medical applications, including surgical procedures and dermatological treatments, where precise control and high power are essential.
Scientific research:
In research, ytterbium lasers are used in spectroscopy, metrology, and fundamental studies requiring stable and tunable light sources.
Telecommunications:
Ytterbium-doped fiber amplifiers (YDFAs) are used to amplify signals in optical communication systems.
Advantages:
High power and efficiency:
The high efficiency and power output make ytterbium lasers suitable for demanding applications.
Thermal management:
Improved thermal properties reduce the risk of overheating and enhance stability and performance.
Flexibility:
Broad absorption and emission bands allow for versatile use in various applications.
Challenges:
Cost:
High-quality ytterbium-doped materials and precise manufacturing processes can be expensive.
Complexity:
The systems can be complex to design and maintain, particularly for high-power applications.
Popular Articles
Diffraction Gratings: Selection Guidelines
What Is Photonics?
Fiber Lasers: Continuing to Power Growth
Scatter and BSDF Measurements: Theory and Practice
Detectors: Options for Low-Light Applications
Explore Our Content
News
Features
Latest Products
Webinars
White Papers
All Things Photonics Podcast
Photonics Spectra
Now
Videos
Our Summits & Conferences
Industry Events
Bookstore
Join Our Community
Subscribe
Advertise
Become a member
Sign in
Contribute a Feature
Suggest a Webinar
Submit a Press Release
Mobile Apps
About Us
Our Company
Our Publications
Contact Us
Career Opportunities
Teddi C. Laurin Scholarship
Terms & Conditions
Privacy Policy
California Consumer Privacy Act (CCPA)
©2025 Photonics Media
100 West St.
Pittsfield, MA, 01201 USA
[email protected]
Requesting information about:
*
First Name:
*
Last Name:
*
Email Address:
*
Company:
*
Country:
Please select your country
Afghanistan
Albania
Algeria
American Samoa
Andorra
Angola
Anguilla
Antigua and Barbuda
Argentina
Armenia
Aruba
Ascension Island
Australia
Austria
Azerbaijan
Bahamas
Bahrain
Bangladesh
Barbados
Belarus
Belgium
Belize
Benin
Bermuda
Bhutan
Bolivia
Bonaire
Bosnia & Herzegovina
Botswana
Brazil
British Indian Ocean Territory
Brunei Darussalam
Bulgaria
Burkina Faso
Burundi
Cambodia
Cameroon
Canada
Cape Verde
Cayman Islands
Central African Republic
Chad
Chile
China
Colombia
Comoros
Congo
Cook Islands
Costa Rica
Croatia
Cuba
Curacao
Cyprus
Czech Republic
Denmark
Djibouti
Dominica
Dominican Republic
Ecuador
Egypt
El Salvador
Equatorial Guinea
Eritrea
Estonia
Eswatini
Ethiopia
Falkland Islands
Faroe Islands
Fiji
Finland
France
French Guiana
French Polynesia
Gabon
Gambia
Gaza
Georgia
Germany
Ghana
Gibraltar
Greece
Greenland
Grenada
Guadeloupe
Guam
Guatemala
Guernsey
Guinea
Guinea-Bissau
Guyana
Haiti
Honduras
Hong Kong
Hungary
Iceland
India
Indonesia
Iran
Iraq
Ireland
Isle of Man
Israel
Italy
Ivory Coast
Jamaica
Japan
Jersey
Jordan
Kazakhstan
Kenya
Kiribati
Kosovo
Kuwait
Kyrgyzstan
Laos
Latvia
Lebanon
Lesotho
Liberia
Libya
Liechtenstein
Lithuania
Luxembourg
Macao
Madagascar
Malawi
Malaysia
Maldives
Mali
Malta
Marshall Islands
Martinique
Mauritania
Mauritius
Mexico
Micronesia
Moldova
Monaco
Mongolia
Montenegro
Montserrat
Morocco
Mozambique
Myanmar
Namibia
Nauru
Nepal
Netherlands
New Caledonia
New Zealand
Nicaragua
Niger
Nigeria
Niue
Norfolk Island
North Korea
North Macedonia
Northern Mariana Islands
Norway
Oman
Pakistan
Palau
Palestine
Panama
Papua New Guinea
Paraguay
Peru
Philippines
Pitcairn Islands
Poland
Portugal
Puerto Rico
Qatar
Reunion
Romania
Russia
Rwanda
Saint Helena
Saint Kitts and Nevis
Saint Lucia
Saint Vincent and the Grenadines
Samoa
San Marino
Sao Tome and Principe
Saudi Arabia
Senegal
Serbia
Seychelles
Sierra Leone
Singapore
Slovakia
Slovenia
Solomon Islands
Somalia
South Africa
South Korea
South Sudan
Spain
Sri Lanka
Sudan
Suriname
Sweden
Switzerland
Syria
Taiwan
Tajikistan
Tanzania
Thailand
Timor-Leste
Togo
Tonga
Trinidad and Tobago
Tunisia
Turkey
Turkmenistan
Turks and Caicos
Tuvalu
Uganda
Ukraine
United Arab Emirates
United Kingdom
United States
Uruguay
Uzbekistan
Vanuatu
Vatican City State
Venezuela
Vietnam
Virgin Islands - British
Virgin Islands - U.S.
Yemen
Zambia
Zimbabwe
Message:
When you click "Send Request", we will record and send your personal contact information to the supplier by email so they may respond directly. You also agree that Photonics Media may contact you with information related to this inquiry, and that you have read and accept our
Privacy Policy
and
Terms and Conditions of Use
.
* Required
We use cookies to improve user experience and analyze our website traffic as stated in our
Privacy Policy
. By using this website, you agree to the use of
cookies
unless you have disabled them.