Using an Innolux LCD, the researchers were able to ensure a satisfactory angular resolution by introducing a 15º tilt between panels, which expanded the binocular FOV. The modulation transfer function across the image field guarantees the faithful reproduction of high-quality images.
Introducing a ray tracing-based graphical process called “corrected eyebox mapping,” the researchers also had the ability to facilitate the correction of myopia, hyperopia, and astigmatism. This procedure takes into account parameters such as spherical power, cylinder power, and cylinder axis for comprehensive visual correction.
As part of the work, the team investigated the optics of light-field virtual reality, demonstrating the creation of elemental image arrays through a lens array and spatially multiplexed light-field optics. This approach generated volumetric virtual images that accurately simulated proper eye accommodation, eliminating the need to address VAC.
According to study author Yung-Hsun Wu of Innolux Corp., “by utilizing light-field technology, both vision correction and the expansion of the eyebox are achieved, thereby elevating the overall virtual reality experience and enhancing user comfort.”
With these findings, the researchers are hopeful that not only will this research add to the development of comfortable VR devices, but it will aid in the future creation of better high-resolution light-field displays.
The research was published in Journal of Optical Microsystems (www.doi.org/10.1117/1.JOM.3.4.041202).